1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987 |
- #coding=utf-8
- import pdfplumber
- import pandas as pd
- import numpy as np;
- import sys
- import os
- import traceback
- from prp import PrpCrypt
- #指标相关
- import loanIndexParser as lip;
- import payRcdIndexParser as prp;
- import creditCardIndexParser as cip
- import queryInfoIndexParser as qip
- import requests
- import utils;
- import time;
- import consts;
- import math
- import dfParser;
- import gc
- from dbController import DbController
- from ini_op import Config;
- base_dir = os.path.dirname(os.path.abspath(__file__))
- config = Config(base_dir+"/config.ini");
- #连接数据库
- dbController = DbController();
- pd.set_option('mode.chained_assignment', None)
- import log
- logger = log.logger
- # 查询信息
- dfMap = {};
- allHeaders = [] # 所有表头
- queryInfoDf = pd.DataFrame();
- queryInfoDf_header = ["被查询者姓名", "被查询者证件类型", "被查询者证件号码", "查询机构", "查询原因"];
- dfMap["queryInfoDf"] = {"df": queryInfoDf, "nextDf": None};
- allHeaders.append(queryInfoDf_header);
- # 身份信息
- identityDf = pd.DataFrame();
- identity_header = ['性别', '出生日期', '婚姻状况', '学历', '学位', '就业状况', '国籍', '电子邮箱']
- addressDf = pd.DataFrame(); # 通讯地址
- dfMap["identityDf"] = {"df": identityDf, "nextDf": None, "mobiles": None};
- allHeaders.append(identity_header);
- # 配偶信息
- mateDf = pd.DataFrame();
- mateDf_header = ['姓名', '证件类型', '证件号码', '工作单位', '联系电话']
- dfMap["mateDf"] = {"df": mateDf, "nextDf": None};
- allHeaders.append(mateDf_header);
- # 居住信息====暂时该信息没有用到先不解析
- liveInfoDf = pd.DataFrame();
- liveInfoDf_header = ['编号', '居住地址', '住宅电话', '居住状况', '信息更新日期']
- dfMap["liveInfoDf"] = {"df": liveInfoDf, "nextDf": None};
- allHeaders.append(liveInfoDf_header);
- # 职业信息
- occupationDf = pd.DataFrame();
- occupationInfo_header = ['编号', '工作单位', '单位性质', '单位地址', '单位电话']
- occupationInfo_header1 = ['编号', '职业', '行业', '职务', '职称', '进入本单位年份', '信息更新日期']
- dfMap["occupationDf"] = ({"df": occupationDf, "nextDf": None});
- # allHeaders.append(occupationInfo_header1);
- allHeaders.append(occupationInfo_header);
- # 上次查询记录
- preQueryRcd_header0 = ['上一次查询记录']
- allHeaders.append(preQueryRcd_header0);
- # 查询记录概要
- # queryInfoBriefDf = pd.DataFrame();
- # queryInfoBrief_header0 = ['最近1个月内的查询机构数', '最近1个月内的查询次数', '最近2年内的查询次数']
- # queryInfoBrief_header1 = ['贷款审批', '信用卡审批', '贷款审批', '信用卡\n审批', '本人查询', '贷后管理', '担保资格\n审查', '特约商户\n实名审查']
- # dfMap["queryInfoBriefDf"] = ({"df": queryInfoBriefDf, "nextDf": None});
- # allHeaders.append(queryInfoBrief_header0);
- # allHeaders.append(queryInfoBrief_header1);
- # 信贷交易信息提示
- loanTradeInfoDf = pd.DataFrame();
- loanTradeInfo_header = ['业务类型', '账户数', '首笔业务发放月份'];
- dfMap["loanTradeInfoDf"] = ({"df": loanTradeInfoDf, "nextDf": None});
- allHeaders.append(loanTradeInfo_header)
- # 信贷交易违约信息概要
- # 被追偿信息汇总 资产处置和垫款业务
- recoveryInfoSumDf = pd.DataFrame();
- recoveryInfoSumDf_header = ['业务种类', '账户数', '余额'];
- dfMap["recoveryInfoSumDf"] = ({"df": recoveryInfoSumDf, "nextDf": None});
- allHeaders.append(recoveryInfoSumDf_header)
- # 呆账信息汇总
- badDebtsInfoSumDf = pd.DataFrame();
- badDebtsInfoSumDf_header = ['账户数', '余额']; # 被追偿信息汇总
- dfMap["badDebtsInfoSumDf"] = ({"df": badDebtsInfoSumDf, "nextDf": None});
- allHeaders.append(badDebtsInfoSumDf_header)
- # 逾期透资信息汇总
- overdueInfoSumDf = pd.DataFrame();
- overdueInfoSumDf_header = ['账户类型', '账户数', '月份数', '单月最高逾期/透支总额', '最长逾期/透支月数']
- dfMap["overdueInfoSumDf"] = ({"df": overdueInfoSumDf, "nextDf": None});
- allHeaders.append(overdueInfoSumDf_header)
- # 非循环贷账户信息汇总
- loanAccountInfoSumDf = pd.DataFrame();
- loanAccountInfoSumDf_header0 = ['非循环贷账户信息汇总']
- loanAccountInfoSumDf_header1 = ['管理机构数', '账户数', '授信总额', '余额', '最近6个月平均应还款']
- dfMap["loanAccountInfoSumDf"] = ({"df": loanAccountInfoSumDf, "nextDf": None});
- allHeaders.append(loanAccountInfoSumDf_header0)
- allHeaders.append(loanAccountInfoSumDf_header1)
- # 循环额度下分账户信息汇总
- cycleCreditAccountInfoSumDf = pd.DataFrame();
- cycleCreditAccountInfoSumDf_header0 = ['循环额度下分账户信息汇总']
- cycleCreditAccountInfoSumDf_header1 = ['管理机构数', '账户数', '授信总额', '余额', '最近6个月平均应还款'],
- dfMap["cycleCreditAccountInfoSumDf"] = ({"df": cycleCreditAccountInfoSumDf, "nextDf": None});
- allHeaders.append(cycleCreditAccountInfoSumDf_header0)
- allHeaders.append(cycleCreditAccountInfoSumDf_header1)
- # 循环贷账户信息汇总
- cycleLoanAccountInfoSumDf = pd.DataFrame();
- cycleLoanAccountInfoSumDf_header0 = ['循环贷账户信息汇总']
- cycleLoanAccountInfoSumDf_header1 = ['管理机构数', '账户数', '授信总额', '余额', '最近6个月平均应还款']
- dfMap["cycleLoanAccountInfoSumDf"] = ({"df": cycleLoanAccountInfoSumDf, "nextDf": None});
- allHeaders.append(cycleLoanAccountInfoSumDf_header0)
- allHeaders.append(cycleLoanAccountInfoSumDf_header1)
- # 贷记卡账户信息汇总
- creditCardInfoSumDf = pd.DataFrame();
- creditCardInfoSumDf_header0 = ['贷记卡账户信息汇总']
- creditCardInfoSumDf_header1 = ['发卡机构数', '账户数', '授信总额', '单家机构最高\n授信额', '单家机构最低\n授信额', '已用额度', '最近6个月平\n均使用额度']
- dfMap["creditCardInfoSumDf"] = ({"df": creditCardInfoSumDf, "nextDf": None});
- allHeaders.append(creditCardInfoSumDf_header0)
- allHeaders.append(creditCardInfoSumDf_header1)
- # 准贷记卡账户信息汇总
- creditCardInfoSumDfZ = pd.DataFrame();
- creditCardInfoSumDfZ_header0 = ['准贷记卡账户信息汇总']#'准贷记卡账户信息汇总'
- creditCardInfoSumDfZ_header1 = ['发卡机构数', '账户数', '授信总额', '单家机构最高\n授信额', '单家机构最低\n授信额', '透支余额', '最近6个月平\n均透支余额']
- dfMap["creditCardInfoSumDfZ"] = ({"df": creditCardInfoSumDfZ, "nextDf": None});
- allHeaders.append(creditCardInfoSumDfZ_header0)
- allHeaders.append(creditCardInfoSumDfZ_header1)
- #公共信息概要
- publicInfoBriefDf = pd.DataFrame();
- publicInfoBriefDf_header0 = ['公共信息汇总']
- dfMap["publicInfoBriefDf"] = ({"df": publicInfoBriefDf, "nextDf": None});
- allHeaders.append(publicInfoBriefDf_header0)
- #查询记录汇总
- queryRecordSumDf_header0=['最近1个月内的查询机构数', '最近1个月内的查询次数', '最近2年内的查询次数']
- queryRecordSumDf = pd.DataFrame();
- dfMap["queryRecordSumDf"] = ({"df": queryRecordSumDf, "nextDf": None});
- allHeaders.append(queryRecordSumDf_header0)
- # 非循环贷账户,循环额度下分账户
- # 循环贷账户
- loan_header = ['管理机构', '账户标识', '开立日期', '到期日期', '借款金额', '账户币种']
- loanDfs = [];
- dfMap["loanDfs"] = ({"dfs": loanDfs, "nextDf": []});
- allHeaders.append(loan_header)
- # 贷记卡账户
- creditCard_header = ['发卡机构', '账户标识', '开立日期', '账户授信额度', '共享授信额度', '币种', '业务种类', '担保方式']
- creditCardDfs = [];
- dfMap["creditCardDfs"] = ({"dfs": creditCardDfs, "nextDf": []});
- allHeaders.append(creditCard_header)
- # 准备贷记卡账户
- creditCardZ_header = ['发卡机构', '账户标识', '开立日期', '账户授信额度', '共享授信额度', '币种', '担保方式']
- creditCardDfsZ = [];
- dfMap["creditCardDfsZ"] = ({"dfs": creditCardDfsZ, "nextDf": []});
- allHeaders.append(creditCardZ_header)
- #
- # 相关还款责任信息汇总 未使用到
- # 信贷交易信息明细
- # 被追偿信息 未使用到
- recoveryInfoDfs_header = ['管理机构','业务种类','债权接收日期','债权金额','债权转移时的还款状态']
- recoveryInfoDfs = [];
- dfMap["recoveryInfoDfs"] = ({"dfs": recoveryInfoDfs, "nextDf": []});
- allHeaders.append(recoveryInfoDfs_header)
- # 公共信息明细
- # 强制执行记录
- forceExecRcdDfs_header = ['编号', '执行法院', '执行案由', '立案日期', '结案方式']
- forceExecRcdDfs = [];
- dfMap["forceExecRcdDfs"] = ({"dfs": forceExecRcdDfs, "nextDf": []});
- allHeaders.append(forceExecRcdDfs_header)
- # 查询记录
- queryRecordDetailDf_header = ['编号', '查询日期', '查询机构', '查询原因']
- dfMap["queryRecordDetailDf"] = ({"df": pd.DataFrame(), "nextDf": []});
- allHeaders.append(queryRecordDetailDf_header)
- #住房公积金参缴记录
- housingFundRcdDfs_header =['参缴地', '参缴日期', '初缴月份', '缴至月份', '缴费状态', '月缴存额', '个人缴存比例', '单位缴存比例']
- housingFundRcdDfs = []
- dfMap["housingFundRcdDfs"] = ({"dfs": housingFundRcdDfs, "nextDf": []});
- allHeaders.append(housingFundRcdDfs_header)
- repaymentSumDf_header0=['相关还款责任信息汇总']
- dfMap["repaymentSumDf"] = ({"df": pd.DataFrame(), "nextDf": None});
- allHeaders.append(repaymentSumDf_header0)
- # 处理分页思路
- # df估计得放到对象里面,然后存储下一个df,一个对象里包含key
- # 然后判断对象的df的完整性,如果不完整代表被分页了,把nextdf合并到当前的df
- # 针对可合并的列的场景
- # =======
- keyList = [] # 存储所有的df的key列表
- # pd.Series()
- # 检查数据是否带表头
- # 应该是每一页开头的一行和每个表头对比一次,确认是不是表头,或者表头有什么共同的规律也可以看下
- import timeit
- # 定义指标部分======================start
- reportTime = ""; # 报告时间
- # 被查询者姓名
- queryInfoName = "";
- queryInfoCardId = "" # 被查询者证件号码
- # 定义指标部分======================end
- # 被查询信息-基础信息
- # 报告时间
- # 被查询者姓名
- # 被查询者证件号码
- # 基础信息
- queryInfo = {"reportTime":"","queryInfoCardId":""}
- # 身份信息
- identity = {}
- # 配偶信息
- mate = {}
- # 信贷交易信息提示-信用提示
- loanTradeInfo = {'perHouseLoanAccount': 0, 'perBusHouseLoanAccount': 0, 'otherLoanAccount': 0, 'loanMonthMin': 0,
- 'creditCardMonthMin': 0, 'creditAccount': 0, 'creditAccountZ': 0}
- # 逾期及违约信息概要
- overdueBrief = {}
- # 逾期及透资信息汇总
- # 贷款逾期账户数 loanOverdueAccount
- # 贷款逾期月份数 loanOverdueMonth
- # 贷款单月最高逾期总额 loanCurMonthOverdueMaxTotal
- # 贷款最长逾期月数 loanMaxOverdueMonth
- overdueInfo = {"loanOverdueAccount": "", "loanOverdueMonth": "", "loanCurMonthOverdueMaxTotal": "",
- "loanMaxOverdueMonth": "",
- "creditCardOverdueAccount": "", "creditCardOverdueMonth": "", "creditCardCurMonthOverdueMaxTotal": "",
- "creditCardMaxOverdueMonth": ""}
- # 未结清贷款信息汇总
- # ['管理机构数', '账户数', '授信总额', '余额', '最近6个月平均应还款']
- loanAccountInfoSum = {"mgrOrgCount": 0, "account": 0, "creditTotalAmt": 0, "balance": 0, "last6AvgPayAmt": 0}
- # 未销户贷记卡发卡法人机构数
- # 未销户贷记卡发卡机构数
- # 未销户贷记卡账户数
- # 未销户贷记卡授信总额
- # 未销户贷记卡单家行最高授信额
- # 未销户贷记卡单家行最低授信额
- # 未销户贷记卡已用额度
- # 未销户贷记卡近6月平均使用额度
- # 未结清贷记卡信息汇总
- # ['发卡机构数', '账户数', '授信总额', '单家机构最高\n授信额', '单家机构最低\n授信额', '已用额度', '最近6个月平\n均使用额度']
- creditCardInfoSum = {"awardOrgCount": 0, "account": 0, "creditTotalAmt": 0, "perMaxCreditTotalAmt": 0,
- "perMinCreditTotalAmt": 0, "useAmt": 0, "last6AvgUseAmt": 0}
- # 信 贷 审 批 查 询 记 录 明 细
- queryRecordDetail = {"last1MonthQueryTimes": 0, "last3MothLoanApproveTimes": 0, "last3MonthQueryTimes": 0,
- "lastTimeLoanApproveMonth": 0}
- #最近一笔结清贷款的贷款金额
- loanAccountInfo = {"lastSettleLoanAmt": 0}
- loanAccountDfs=[];#横向合并
- creditCardAccountDfs=[];#贷记卡账户合并
- creditCardAccountDfsZ=[];#准贷记卡账户合并
- recoveryInfoAccountDfs=[];#被追偿账户合并
- housingFundRcdAccountDfs=[];#公积金账户合并
- #============================指标定义区 start=============================
- #基本信息 拆分
- # basicInfoDf = pd.DataFrame(columns=consts.basicInfoHeader, index=[0])
- #身份信息
- identityInfoIndex = '身份信息'
- identityInfoDf = pd.DataFrame(columns=consts.identityInfoHeader,index=[identityInfoIndex])
- #配偶信息
- mateInfoIndex = '配偶信息'
- mateInfoDf = pd.DataFrame(columns=consts.mateInfoHeader,index=[mateInfoIndex])
- #居住信息
- liveInfoIndex = '居住信息'
- liveInfoDf = pd.DataFrame(columns=consts.liveInfoHeader,index=[liveInfoIndex])
- #职业信息
- occupationInfoIndex = '职业信息'
- occupationInfoDf = pd.DataFrame(columns=consts.occupationInfoHeader,index=[occupationInfoIndex])
- #信贷交易信息提示
- loanTradeInfoIndex = '信贷交易信息提示'
- briefInfoDf_loanTradeInfo = pd.DataFrame(columns=consts.briefInfoHeader_loanTradeInfo,index=[loanTradeInfoIndex])
- #被追偿信息汇总及呆账信息汇总
- recoveryInfoSumIndex = '信贷交易违约信息概要'
- briefInfoDf_recoveryInfoSum = pd.DataFrame(columns=consts.briefInfoHeader_recoveryInfo,index=[recoveryInfoSumIndex])
- #呆账信息汇总
- badDebtsInfoIndex = '呆账信息汇总'
- briefInfoDf_badDebtsInfoSum = pd.DataFrame(columns=consts.briefInfoHeader_badDebtsInfoSum,index=[badDebtsInfoIndex])
- #逾期(透支)信息汇总
- overdueInfoSumIndex='逾期(透支)信息汇总'
- briefInfoDf_overdueInfoSum = pd.DataFrame(columns=consts.briefInfoHeader_overdueInfoSum,index=[overdueInfoSumIndex])
- #信贷交易授信及负债信息概要
- loanTradeCreditInfoIndex='信贷交易授信及负债信息概要'
- briefInfoDf_loanTradeCreditInfo = pd.DataFrame(columns=consts.briefInfoHeader_loanTradeCreditInfo,index=[loanTradeCreditInfoIndex]).fillna(0.0)
- #公共信息概要
- publicInfoBriefIndex = '公共信息概要'
- publicInfoBriefDf = pd.DataFrame(columns=consts.publicInfoBriefHeader,index=[publicInfoBriefIndex])
- #查询记录汇总
- queryRecordSumIndex = '查询记录汇总'
- queryRecordSumDf = pd.DataFrame(columns=consts.queryRecordSumHeader,index=[queryRecordSumIndex])
- #信贷交易明细-被追偿信息
- recoveryInfoIndex='被追偿信息'
- creditTradeDetailDf_recoveryInfo = pd.DataFrame(columns=consts.creditTradeDetailHeader_recoveryInfo,index=[recoveryInfoIndex])
- #信贷交易明细-特殊交易
- specialTradeIndex='特殊交易'
- creditTradeDetailHeader_specialTrade = pd.DataFrame(columns=consts.creditTradeDetailHeader_specialTrade,index=[specialTradeIndex])
- #信贷交易明细
- #非循环贷账户
- loanInfoIndex='非循环贷账户'
- creditTradeDetailDf_loanAccountInfo = pd.DataFrame(columns=consts.creditTradeDetailHeader_loanAccountInfo,index=[loanInfoIndex])
- #循环额度下分账户
- cycleCreditAccountInfoIndex='循环额度下分账户'
- creditTradeDetailDf_cycleCreditAccountInfo = pd.DataFrame(columns=consts.creditTradeDetailHeader_cycleCreditAccountInfo,index=[cycleCreditAccountInfoIndex])
- #循环贷账户
- cycleLoanAccountInfoIndex='循环贷账户'
- creditTradeDetailDf_cycleLoanAccountInfo = pd.DataFrame(columns=consts.creditTradeDetailHeader_cycleLoanAccountInfo,index=[cycleLoanAccountInfoIndex])
- #贷款信息
- loanAccountInfoIndex='贷款信息'
- loanAccountInfoDf = pd.DataFrame(columns=consts.loanAccountInfoHeader,index=[loanAccountInfoIndex])
- #贷记卡信息
- creditCardAccountInfoIndex = '贷记卡账户'
- creditCardAccountInfoDf = pd.DataFrame(columns=consts.creditCardAccountInfoHeader,index=[creditCardAccountInfoIndex])
- #准贷记卡
- creditCardAccountInfoIndexZ = '准贷记卡账户'
- creditCardAccountInfoDfZ = pd.DataFrame(columns=consts.creditCardAccountInfoHeaderZ,index=[creditCardAccountInfoIndexZ])
- useRateIndex = '使用率'
- useRateDf = pd.DataFrame(columns=consts.creditTradeDetailHeader_useRate,index=[useRateIndex])
- openAccountIndex = '开户数'
- openAccountDf = pd.DataFrame(columns=consts.creditTradeDetailHeader_openAccount,index=[openAccountIndex])
- payRcdStatusIndex = '24期还款状态'
- payRcdStatusDf = pd.DataFrame(columns=consts.creditTradeDetailHeader_payRcdStatus,index=[payRcdStatusIndex])
- #查询记录明细指标
- queryRecordDetailIndex = '信贷审批查询记录明细'
- queryRecordDetailDf = pd.DataFrame(columns=consts.queryRecordDetailHeader,index=[queryRecordDetailIndex])
- #住房公积金
- housingFundRcdIndex = '住房公积金参缴记录'
- housingFundRcdDf = pd.DataFrame(columns=consts.housingFundRcdHeader,index=[housingFundRcdIndex])
- #============================指标定义区 end=============================
- # 解析被查询信息指标
- def parseQueryInfo(dfObj):
- df = dfObj["df"];
- reportTime = df.loc[0, :][3]
- reportTime = reportTime.split(":")[1]
- reportTime = reportTime.replace(".", "-"); # 报告时间
- queryInfo["reportTime"] = reportTime
- row = df.loc[2, :]
- queryInfo["queryInfoName"] = row[0]; # 被查询者姓名
- # basicInfoDf.loc[0, '姓名'] = row[0]
- queryInfo["queryInfoCardId"] = row[2].replace("\n", ""); # 被查询者证件号码
- # basicInfoDf.loc[0, '身份证'] = row[2].replace("\n", "")
- # 婚姻状况
- # 学历
- # 单位电话
- # 住宅电话
- # 通讯地址
- def parseIdentity(dfObj):
- df = dfObj["df"];
- row1 = df.loc[1, :].dropna().reset_index(drop=True)
- # identity["marital"] = row1[3] # 婚姻状况
- # identity["education"] = row1[4] # 学历
- # identity["commAddress"] = row1[9].replace("\n", ""); # 通讯地址
- identityInfoDf.loc[identityInfoIndex, '性别'] = row1[0]
- identityInfoDf.loc[identityInfoIndex, '出生日期'] = dfParser.formatDate(row1[1])[0:7]
- identityInfoDf.loc[identityInfoIndex, '国籍'] = row1[6]
- identityInfoDf.loc[identityInfoIndex, '户籍地址'] = row1[9].replace("\n", "")
- identityInfoDf.loc[identityInfoIndex, '婚姻状况'] = row1[2]
- identityInfoDf.loc[identityInfoIndex, '学位'] = row1[4]
- identityInfoDf.loc[identityInfoIndex, '通讯地址'] = row1[8].replace("\n", "")
- identityInfoDf.loc[identityInfoIndex, '就业状况'] = row1[5]
- mobileDf = dfObj["mobileDf"];
- identityInfoDf.loc[identityInfoIndex, '历史手机号码数'] = mobileDf.index.size
- reportTime = queryInfo["reportTime"]
- identityInfoDf.loc[identityInfoIndex, '近3个月手机号码数'] = getLastMonthMobileCount(mobileDf,3,reportTime)
- identityInfoDf.loc[identityInfoIndex, '近6个月手机号码数'] = getLastMonthMobileCount(mobileDf, 6,reportTime)
- identityInfoDf.loc[identityInfoIndex, '近12个月手机号码数'] = getLastMonthMobileCount(mobileDf, 12,reportTime)
- identityInfoDf.loc[identityInfoIndex, '近24个月手机号码数'] = getLastMonthMobileCount(mobileDf, 24,reportTime)
- #最近几个月电话号码数
- def getLastMonthMobileCount(df, month,reportTime):
- # 当前日期
- last1MonthDateStr = reportTime
- # 最近一个月
- lastMonthDate = np.datetime64(last1MonthDateStr, "D") - np.timedelta64(30 * month, 'D')
- lastMonthMobileDf = df[df[5] >= str(lastMonthDate)]
- return lastMonthMobileDf.shape[0];
- # 配偶姓名
- # 配偶证件号码
- # 配偶工作单位
- # 配偶联系电话
- def parseMate(dfObj):
- df = dfObj["df"];
- if not df.empty:
- row1 = df.loc[1, :]
- mate["mateName"] = row1[0] # 配偶姓名
- mate["mateCardId"] = row1[2] # 配偶证件号码
- mate["mateWorkCompany"] = row1[3].replace("\n", ""); # 配偶工作单位
- mate["mateContactTel"] = row1[4]; # 配偶联系电话
- mateInfoDf.loc[mateInfoIndex, '姓名'] = row1[0]
- mateInfoDf.loc[mateInfoIndex, '证件号码'] = row1[2]
- mateInfoDf.loc[mateInfoIndex, '工作单位'] = row1[3].replace("\n", "");
- mateInfoDf.loc[mateInfoIndex, '联系电话'] = row1[4].replace("\n", "");
- #解析居住信息
- def parseLiveInfo(dfObj):
- df = dfObj["df"];
- if not df.empty:
- row1 = df.loc[1, :]
- liveInfoDf.loc[liveInfoIndex, '居住地址'] = row1[1]
- liveInfoDf.loc[liveInfoIndex, '住宅电话'] = row1[2]
- liveInfoDf.loc[liveInfoIndex, '历史居住地址个数'] = df.index.size-1;
- curDate = np.datetime64(time.strftime("%Y-%m-%d"));
- last3year = str(curDate)[0:4]
- last3yearDate = str(int(last3year)-3)+str(curDate)[4:10]
- lastLiveDf = df[df[4]>=last3yearDate];
- liveInfoDf.loc[liveInfoIndex, '最近3年内居住地址个数'] = lastLiveDf.index.size-1;
- houseIndex = df[df[3]=='自置'].index.size>0
- if (houseIndex):
- houseStr = '是'
- else:
- houseStr= '否'
- liveInfoDf.loc[liveInfoIndex, '当前居住状况-是否具有自有住房'] = houseStr;
- liveInfoDf.loc[liveInfoIndex, '居住状况'] = row1[3]
- liveInfoDf.loc[liveInfoIndex, '信息更新日期'] = row1[4]
- #解析职业信息
- def parseOccupationInfoDf(dfObj):
- df = dfObj["df"];
- if not df.empty:
- occIndex1 = 0#判断职业从哪行开始
- for i in range(0,df.index.size):
- if df.loc[i,:].dropna().tolist()==occupationInfo_header1:
- occIndex1=i;
- break;
- occDf = df[1:occIndex1].reset_index(drop=True)#工作单位
- occDfNew = pd.DataFrame()
- occDf1New = pd.DataFrame()
- #删除为none的列 合并的bug TODO
- for i in range(0,occDf.index.size):
- occDfNew = occDfNew.append([pd.DataFrame(occDf.iloc[i].dropna().reset_index(drop=True)).T],ignore_index=True)
- occDf1 = df[occIndex1+1:df.index.size].reset_index(drop=True) #职业
- for i in range(0,occDf1.index.size):
- occDf1New = occDf1New.append([pd.DataFrame(occDf1.iloc[i].dropna().reset_index(drop=True)).T], ignore_index=True)
- occDf = pd.concat([occDfNew, occDf1New], axis=1, ignore_index=True)#合并df
- row = occDf.loc[0, :].dropna()#取最新
- occupationInfoDf.loc[occupationInfoIndex, '工作单位'] = row[1]
- last3yearDate = utils.getLastMonthDate(queryInfo['reportTime'],12*3)
- occDf = utils.replaceDateColIdx(occDf,occDf.columns.size-1)
- dateIndex = occDf.columns.size-1;#日期列
- last3yearOccDf = occDf[occDf[dateIndex]>=last3yearDate]
- occupationInfoDf.loc[occupationInfoIndex, '最近3年内工作单位数'] = last3yearOccDf.index.size;
- occupationInfoDf.loc[occupationInfoIndex, '单位电话'] = row[4];
- reportTime = queryInfo['reportTime']
- try:
- minDateIndex = np.argmin(occDf[dateIndex]);
- maxDateIndex = np.argmax(occDf[dateIndex]);
- rowYearMin = occDf.loc[minDateIndex, :].dropna()
- rowYearMax = occDf.loc[maxDateIndex, :].dropna()
- if rowYearMin[10]!="--":
- occupationInfoDf.loc[occupationInfoIndex, '最早进入本单位年份距报告日期时长'] = int(str(np.datetime64(reportTime, "Y")))-int(rowYearMin[10])
- if rowYearMax[10]!="--":
- occupationInfoDf.loc[occupationInfoIndex, '最新进入本单位年份距报告日期时长'] = int(str(np.datetime64(reportTime, "Y")))-int(rowYearMax[10])
- except:
- logger.error("最早进入本单位年份距报告日期时长解析异常")
- row0 = occDf.loc[0,:].dropna().reset_index(drop=True)#最新
- occupationInfoDf.loc[occupationInfoIndex, '单位性质'] =row0[2]
- occupationInfoDf.loc[occupationInfoIndex, '单位地址'] = row0[3]
- occupationInfoDf.loc[occupationInfoIndex, '职业'] = row0[6]
- occupationInfoDf.loc[occupationInfoIndex, '行业'] = row0[7]
- occupationInfoDf.loc[occupationInfoIndex, '职务'] = row0[8]
- occupationInfoDf.loc[occupationInfoIndex, '职称'] = row0[9]
- occupationInfoDf.loc[occupationInfoIndex, '进入本单位年份'] = row0[10]
- occupationInfoDf.loc[occupationInfoIndex, '信息更新日期'] = row0[11]
- occupationInfoDf.loc[occupationInfoIndex, '历史工作单位数'] = occDf1.index.size
- # 日期相减离当前时间月份
- # 贷款账龄(月数)=当前日期(2020-04-01)-最小月份的1日(2019.2->2019-12-01)=4
- # def difMonth(dateStr):
- # return int(int(str(np.datetime64(time.strftime("%Y-%m-%d")) -
- # np.datetime64(dateStr.replace('.', '-'), "D")).split(" ")[0]) / 30);
- # 信贷交易明细汇总
- def parseLoanTradeInfo(dfObj):
- df = dfObj["df"];
- # row1 = df.loc[1, :]
- loanMonthDf = df[1: 4]
- loanMonthDf = loanMonthDf.reset_index(drop=True)
- briefInfoDf_loanTradeInfo.loc[loanTradeInfoIndex, '个人住房贷款账户数'] = utils.toInt(loanMonthDf.loc[0, :][2])
- briefInfoDf_loanTradeInfo.loc[loanTradeInfoIndex,'个人商用房贷款(包括商住两用)账户数']=utils.toInt(loanMonthDf.loc[1, :][2])
- briefInfoDf_loanTradeInfo.loc[loanTradeInfoIndex, '其他类贷款账户数'] = utils.toInt(loanMonthDf.loc[2, :][2])
- creditCardDf = df[4: 6];
- creditCardDf = creditCardDf.reset_index(drop=True)
- briefInfoDf_loanTradeInfo.loc[loanTradeInfoIndex, '贷记卡账户数'] = utils.toInt(creditCardDf.loc[0, :][2])
- briefInfoDf_loanTradeInfo.loc[loanTradeInfoIndex, '准贷记卡账户数'] = utils.toInt(creditCardDf.loc[1, :][2])
- # 解析呆账信息汇总
- def parseBadDebtsInfoSumDf(dfObj):
- df = dfObj["df"];
- if not df.empty:
- row1 = df.loc[2, :]
- briefInfoDf_badDebtsInfoSum.loc[badDebtsInfoIndex, '账户数'] = row1[0];
- briefInfoDf_badDebtsInfoSum.loc[badDebtsInfoIndex, '余额'] = utils.replaceAmt(row1[1]);
- # 解析被追偿信息汇总
- def parseRecoveryInfoSum(dfObj):
- df = dfObj["df"];
- if not df.empty:
- row1 = df.loc[2, :]
- row2 = df.loc[3, :]
- row3 = df.loc[4, :]
- overdueBrief["disposalInfoSumAccount"] = row1[1]; # 资产处置信息汇总笔数
- briefInfoDf_recoveryInfoSum.loc[recoveryInfoSumIndex, '资产处置业务账户数'] = row1[1];
- overdueBrief["disposalInfoSumAmt"] = row1[2]; # 资产处置信息汇总余额
- briefInfoDf_recoveryInfoSum.loc[recoveryInfoSumIndex, '资产处置业务余额'] = utils.replaceAmt(row1[2]);
- overdueBrief["advanceInfoSumAccount"] = row2[1]; # 垫款业务笔数
- briefInfoDf_recoveryInfoSum.loc[recoveryInfoSumIndex, '垫款业务账户数'] = row2[1];
- overdueBrief["advanceInfoSumAmt"] = row2[2]; # 垫款业务余额
- briefInfoDf_recoveryInfoSum.loc[recoveryInfoSumIndex, '垫款业务余额'] = utils.replaceAmt(row2[2]);
- briefInfoDf_recoveryInfoSum.loc[recoveryInfoSumIndex, '合计总账户数'] = row3[1];
- briefInfoDf_recoveryInfoSum.loc[recoveryInfoSumIndex, '合计总余额'] = utils.replaceAmt(row3[2]);
- # 贷款逾期账户数
- # 贷款逾期月份数
- # 贷款单月最高逾期总额
- # 贷款最长逾期月数
- def parseOverdueInfoSum(dfObj):
- df = dfObj["df"];
- if not df.empty:
- row2= df.loc[2, :]
- row3 = df.loc[3, :]
- row4 = df.loc[4, :]
- row5 = df.loc[5, :]
- row6 = df.loc[6, :]
- #这块的数据需要进行出来 TODO
- briefInfoDf_overdueInfoSum.loc[overdueInfoSumIndex, '非循环贷帐户账户数'] = utils.toInt(row2[1]);
- briefInfoDf_overdueInfoSum.loc[overdueInfoSumIndex, '非循环贷帐户月份数'] = utils.toInt(row2[2]);
- briefInfoDf_overdueInfoSum.loc[overdueInfoSumIndex, '非循环贷帐户单月最高逾期总额'] = utils.replaceAmt(row2[3]);
- briefInfoDf_overdueInfoSum.loc[overdueInfoSumIndex, '非循环贷帐户最长逾期月数'] = utils.toInt(row2[4]);
- briefInfoDf_overdueInfoSum.loc[overdueInfoSumIndex, '循环额度下分账户账户数'] = utils.toInt(row3[1]);
- briefInfoDf_overdueInfoSum.loc[overdueInfoSumIndex, '循环额度下分账户月份数'] = utils.toInt(row3[2]);
- briefInfoDf_overdueInfoSum.loc[overdueInfoSumIndex, '循环额度下分账户单月最高逾期总额'] = utils.replaceAmt(row3[3]);
- briefInfoDf_overdueInfoSum.loc[overdueInfoSumIndex, '循环额度下分账户最长逾期月数'] = utils.toInt(row3[4]);
- briefInfoDf_overdueInfoSum.loc[overdueInfoSumIndex, '循环贷账户账户数'] = utils.toInt(row4[1]);
- briefInfoDf_overdueInfoSum.loc[overdueInfoSumIndex, '循环贷账户月份数'] = utils.toInt(row4[2]);
- briefInfoDf_overdueInfoSum.loc[overdueInfoSumIndex, '循环贷账户单月最高逾期总额'] = utils.replaceAmt(row4[3]);
- briefInfoDf_overdueInfoSum.loc[overdueInfoSumIndex, '循环贷账户最长逾期月数'] = utils.toInt(row4[4]);
- briefInfoDf_overdueInfoSum.loc[overdueInfoSumIndex, '贷记卡账户账户数'] = utils.toInt(row5[1]);
- briefInfoDf_overdueInfoSum.loc[overdueInfoSumIndex, '贷记卡账户月份数'] = utils.toInt(row5[2]);
- briefInfoDf_overdueInfoSum.loc[overdueInfoSumIndex, '贷记卡账户单月逾期总额'] = utils.replaceAmt(row5[3]);
- briefInfoDf_overdueInfoSum.loc[overdueInfoSumIndex, '贷记卡账户最长逾期月数'] = utils.toInt(row5[4]);
- briefInfoDf_overdueInfoSum.loc[overdueInfoSumIndex, '准贷记卡账户账户数'] = utils.toInt(row6[1]);
- briefInfoDf_overdueInfoSum.loc[overdueInfoSumIndex, '准贷记卡账户月份数'] = utils.toInt(row6[2]);
- briefInfoDf_overdueInfoSum.loc[overdueInfoSumIndex, '准贷记卡账户单月透支总额'] = utils.replaceAmt(row6[3]);
- briefInfoDf_overdueInfoSum.loc[overdueInfoSumIndex, '准贷记卡账户最长透支月数'] = utils.toInt(row6[4]);
- overdueInfoAccountDf = df[df[1] != '--'];
- overdueInfoAccountDf = overdueInfoAccountDf[2:7]
- briefInfoDf_overdueInfoSum.loc[overdueInfoSumIndex, '该用户所有逾期账户最长逾期/透支月数最大值']=np.max(overdueInfoAccountDf[4].astype('int'))
- #np.sum(overdueInfoAccountDf[1])
- briefInfoDf_overdueInfoSum.loc[overdueInfoSumIndex, '该用户所有逾期账户数加总']= np.sum(overdueInfoAccountDf[1].astype('int'))# TODO
- # briefInfoDf_overdueInfoSum.loc[overdueInfoSumIndex, '该用户过去5年出现逾期的所有账户数目']=None# TODO
- # 未结清贷款法人机构数 从“未结清贷款信息汇总”中直接提取LoanLegalOrgNum
- # 未结清贷款机构数 从“未结清贷款信息汇总”中直接提取LoanOrgNum
- # 未结清贷款笔数 从“未结清贷款信息汇总”中直接提取CountNum
- # 未结清贷款合同总额 从“未结清贷款信息汇总”中直接提取ContractProfits
- # 未结清贷款合同余额 从“未结清贷款信息汇总”中直接提取Balance
- # 未结清贷款近6月平均应还款 从“未结清贷款信息汇总”中直接提取Last6MothsAvgRepayAmount
- # 个人贷款未结清笔数 "从“未结清贷款信息汇总”计算客户符合以下条件的贷款笔数
- # 1.贷款类型不为('%个人助学贷款%' ,'%农户贷款%')
- # 2.贷款额度>100元
- # 3.贷款状态不为“结清”"
- # 非循环贷账户信息汇总
- def doFilterCalc(dfx):
- dfx = dfx.replace('--', 0)
- return dfx;
- # 科学计数法转换
- def replaceAmt(dfx):
- return dfx.str.replace(',', '')
- # 非循环贷账户信息汇总
- def parseLoanAccountInfoSum(dfObj):
- df = dfObj["df"];
- if not df.empty:
- loanAccountInfoSumDf = df[2:3];
- loanAccountInfoSumDf = doFilterCalc(loanAccountInfoSumDf); # 替换--为0
- loanAccountInfoSumDf = loanAccountInfoSumDf.reset_index(drop=True)
- row0 = loanAccountInfoSumDf.loc[0,:]
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '非循环贷账户管理机构数'] = int(row0[0])
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '非循环贷账户账户数'] = int(row0[1])
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '非循环贷账户授信总额'] = int(utils.replaceAmt(row0[2]))
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '非循环贷账户余额'] = int(utils.replaceAmt(row0[3]))
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '非循环贷账户6月平均应还款'] = int(utils.replaceAmt(row0[4]))
- # 循环额度下分账户
- def parseCycleCreditAccountInfoSum(dfObj):
- df = dfObj["df"];
- if not df.empty:
- cycleCreditAccountInfoSumDf = df[2:3];
- cycleCreditAccountInfoSumDf = doFilterCalc(cycleCreditAccountInfoSumDf); # 替换--为0
- cycleCreditAccountInfoSumDf = cycleCreditAccountInfoSumDf.reset_index(drop=True)
- row0 = cycleCreditAccountInfoSumDf.loc[0,:]
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '循环额度下分账户管理机构数'] = int(row0[0])
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '循环额度下分账户账户数'] = int(row0[1])
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '循环额度下分账户授信总额'] = int(utils.replaceAmt(row0[2]))
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '循环额度下分账户余额'] = int(utils.replaceAmt(row0[3]))
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '循环额度下分账户6月平均应还款'] = int(utils.replaceAmt(row0[4]))
- # 循环贷账户信息
- def parseCyleLoanAccountInfoSum(dfObj):
- df = dfObj["df"];
- if not df.empty:
- cycleLoanAccountInfoSumDf = df[2:3];
- cycleLoanAccountInfoSumDf = doFilterCalc(cycleLoanAccountInfoSumDf); # 替换--为0
- cycleLoanAccountInfoSumDf = cycleLoanAccountInfoSumDf.reset_index(drop=True)
- row0 = cycleLoanAccountInfoSumDf.loc[0,:]
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '循环贷账户管理机构数'] = int(row0[0])
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '循环贷账户账户数'] = int(row0[1])
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '循环贷账户授信总额'] = int(utils.replaceAmt(row0[2]))
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '循环贷账户余额'] = int(utils.replaceAmt(row0[3]))
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '循环贷账户6月平均应还款'] = int(utils.replaceAmt(row0[4]))
- # 解析贷记卡信息汇总,包含准贷记卡
- def parseCreditCardInfoSum(dfObj):
- df = dfObj["df"];
- if not df.empty:
- creditCardInfoSumDf = df[2:3];
- creditCardInfoSumDf = doFilterCalc(creditCardInfoSumDf); # 替换--为0
- creditCardInfoSumDf = creditCardInfoSumDf.reset_index(drop=True)
- row0 = creditCardInfoSumDf.loc[0, :]
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '贷记卡发卡机构数'] = int(row0[0])
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '贷记卡账户数'] = int(row0[1])
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '贷记卡授信总额'] = int(utils.replaceAmt(row0[2]))
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '贷记卡单家机构最高授信额'] = int(utils.replaceAmt(row0[3]))
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '贷记卡单家机构最低授信额'] = int(utils.replaceAmt(row0[4]))
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '贷记卡已用额度'] = int(utils.replaceAmt(row0[5]))
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '贷记卡最近6个月平均使用额度'] = int(utils.replaceAmt(row0[6]))
- # 解析贷记卡信息汇总,包含准贷记卡
- def parseCreditCardInfoSumZ(dfObj):
- df = dfObj["df"];
- if not df.empty:
- creditCardInfoSumDfZ = df[2:3];
- creditCardInfoSumDfZ = doFilterCalc(creditCardInfoSumDfZ);
- creditCardInfoSumDfZ = creditCardInfoSumDfZ.reset_index(drop=True)
- row0 = creditCardInfoSumDfZ.loc[0, :]
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '准贷记卡发卡机构数'] = int(row0[0])
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '准贷记卡账户数'] = int(row0[1])
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '准贷记卡授信总额'] = int(utils.replaceAmt(row0[2]))
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '准贷记卡单家机构最高授信额'] = int(utils.replaceAmt(row0[3]))
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '准贷记卡单家机构最低授信额'] = int(utils.replaceAmt(row0[4]))
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '准贷记卡已用额度'] = int(utils.replaceAmt(row0[5]))
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '准贷记卡最近6个月平均使用额度'] = int(utils.replaceAmt(row0[6]))
- #相关还款责任
- def parseRepaymentSum(dfObj):
- df = dfObj["df"];
- if not df.empty:
- row4 = df.loc[4,:].dropna().reset_index(drop=True)#第4行 为个人
- row8 = None
- if df.index.size ==9:
- row8 = df.loc[8,:].dropna().reset_index(drop=True)#第8行 为企业
- perAccountNum = 0;#个人账户数
- orgAccountNum = 0; # 企业账户数
- totalAccountNum = 0;#总账户数
- guaranteeAccountNum = 0;#相关还款责任总账户数-担保责任
- otherAccountNum =0;#相关还款责任总账户数-其他
- perGuaranteeAmt = 0#个人担保金额及其他
- orgGuaranteeAmt = 0#企业担保金额及其他
- totalGuaranteeAmt = 0;#总担保金额
- guaranteeAmt = 0;#相关还款责任总担保金额
- otherPaymentAmt = 0;#其他还款责任金额
- perGuaranteeBalance = 0 # 个人担保余额及其他
- orgGuaranteeBalance = 0 # 企业担保余额及其他
- totalGuaranteeBalance = 0;#总担保余额
- guaranteeBalance = 0;#相关还款责任总担保余额
- otherPaymentBalance = 0; # 其他还款责任余额
- #计算总账户数
- if row4[0] !="--":
- perAccountNum=perAccountNum+utils.toInt(row4[0])
- guaranteeAccountNum = guaranteeAccountNum + utils.toInt(row4[0])#个人担保责任账户数
- if row4[3] !="--":
- perAccountNum = perAccountNum + utils.toInt(row4[3])#其他
- otherAccountNum = otherAccountNum + utils.toInt(row4[3]) # 其他
- if row8 != None:
- if row8[0] != "--":
- orgAccountNum = orgAccountNum + utils.toInt(row8[0])
- guaranteeAccountNum = guaranteeAccountNum + utils.toInt(row8[0])#企业担保责任账户数
- if row8[3] != "--":
- orgAccountNum = orgAccountNum + utils.toInt(row8[3])#其他
- otherAccountNum = otherAccountNum + utils.toInt(row8[3]) # 其他
- totalAccountNum = perAccountNum+orgAccountNum
- #计算担保金额
- if row4[1] !="--":
- perGuaranteeAmt=perGuaranteeAmt+utils.replaceAmt(row4[1])#担保
- guaranteeAmt = guaranteeAmt + utils.replaceAmt(row4[1]) # 担保
- if row4[4] !="--":
- perGuaranteeAmt = perGuaranteeAmt + utils.replaceAmt(row4[4])#其他
- otherPaymentAmt = otherPaymentAmt + utils.replaceAmt(row4[4]) # 其他
- if row8 != None:
- if row8[1] != "--":
- orgGuaranteeAmt = orgGuaranteeAmt + utils.replaceAmt(row8[1])#担保
- guaranteeAmt = guaranteeAmt + utils.replaceAmt(row8[1]) # 担保
- if row8[4] != "--":
- orgGuaranteeAmt = orgGuaranteeAmt + utils.replaceAmt(row8[4])#其他
- otherPaymentAmt = otherPaymentAmt + utils.replaceAmt(row8[4]) # 其他
- totalGuaranteeAmt = perGuaranteeAmt + orgGuaranteeAmt
- # 计算余额
- if row4[2] !="--":
- perGuaranteeBalance=perGuaranteeBalance+utils.replaceAmt(row4[2])
- guaranteeBalance=guaranteeBalance+utils.replaceAmt(row4[2])#个人担保余额
- if row4[5] !="--":
- perGuaranteeBalance = perGuaranteeBalance + utils.replaceAmt(row4[5])#其他
- otherPaymentBalance = otherPaymentBalance + utils.replaceAmt(row4[5]) # 其他
- if row8 != None:
- if row8[2] != "--":
- orgGuaranteeBalance = orgGuaranteeBalance + utils.replaceAmt(row8[2])
- guaranteeBalance = guaranteeBalance + utils.replaceAmt(row8[2])#企业担保余额
- if row8[5] != "--":
- orgGuaranteeBalance = orgGuaranteeBalance + utils.replaceAmt(row8[5])
- otherPaymentBalance = otherPaymentBalance + utils.replaceAmt(row8[5]) # 其他
- totalGuaranteeBalance = perGuaranteeBalance + orgGuaranteeBalance
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '相关还款责任总账户数(担保+其他+个人+企业)'] =totalAccountNum
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '相关还款责任总担保金额+总还款责任金额(个人+企业)'] =totalGuaranteeAmt
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '相关还款责任账户总担保余额+总其他余额(个人+企业)'] =totalGuaranteeBalance
- if totalGuaranteeAmt !=0:
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '相关还款责任账户总担保余额+总其他余额(个人+企业)/相关还款责任账户总担保金额+总其他金额(个人+企业)'] =\
- round(totalGuaranteeBalance / totalGuaranteeAmt, 2)
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '相关还款责任担保总账户数-个人'] =perAccountNum
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '相关还款责任总担保金额-个人'] =perGuaranteeAmt
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '相关还款责任总担保余额-个人'] =perGuaranteeBalance
- if perGuaranteeBalance !=0:
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '相关还款责任总担保余额-个人/相关还款责任总担保金额-个人'] = round(perGuaranteeBalance/perGuaranteeBalance,2)
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '相关还款责任总账户数-企业'] =orgAccountNum
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '相关还款责任总担保金额-企业'] =orgGuaranteeAmt
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '相关还款责任总担保余额-企业'] =orgGuaranteeBalance
- if orgGuaranteeAmt!=0:
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '相关还款责任总担保余额-企业/相关还款责任总担保金额-企业'] = round(orgGuaranteeBalance/orgGuaranteeAmt,2)
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '相关还款责任总账户数-担保责任'] =guaranteeAccountNum
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '相关还款责任总担保金额-担保责任'] =guaranteeAmt
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '相关还款责任账户总担保余额-担保责任'] =guaranteeBalance
- if guaranteeAmt!=0:
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '相关还款责任总担保余额-担保责任/相关还款责任总担保金额-担保责任'] =round(guaranteeBalance/guaranteeAmt,2)
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '相关还款责任总账户数-其他'] =otherAccountNum
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '相关还款责任总担保金额-其他'] =otherPaymentAmt
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '相关还款责任总担保余额-其他'] =otherPaymentBalance
- if otherPaymentAmt!=0:
- briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '相关还款责任账户总担保余额-其他/相关还款责任账户总担保金额-其他'] =round(otherPaymentBalance/otherPaymentAmt,2)
- #解析公共信息汇总
- def parsePublicInfoBrief(dfObj):
- df = dfObj["df"];
- if not df.empty:
- publicInfoBrief = df[1:6];
- publicInfoBrief = publicInfoBrief.reset_index(drop=True)
- row0 = publicInfoBrief.loc[0, :]
- row1 = publicInfoBrief.loc[1, :]
- row2 = publicInfoBrief.loc[2, :]
- row3 = publicInfoBrief.loc[3, :]
- publicInfoBriefDf.loc[publicInfoBriefIndex, '欠税信息-记录数'] = int(row0[1])
- publicInfoBriefDf.loc[publicInfoBriefIndex, '欠税信息-涉及金额'] = int(utils.replaceAmt(row0[2]))
- publicInfoBriefDf.loc[publicInfoBriefIndex, '民事判决信息-记录数'] = int(row1[1])
- publicInfoBriefDf.loc[publicInfoBriefIndex, '民事判决信息-涉及金额'] = int(utils.replaceAmt(row1[2]))
- publicInfoBriefDf.loc[publicInfoBriefIndex, '强制执行信息-记录数'] = int(row2[1])
- publicInfoBriefDf.loc[publicInfoBriefIndex, '强制执行信息-涉及金额'] = int(utils.replaceAmt(row2[2]))
- publicInfoBriefDf.loc[publicInfoBriefIndex, '行政处罚信息-记录数'] = int(row3[1])
- publicInfoBriefDf.loc[publicInfoBriefIndex, '行政处罚信息-涉及金额'] = int(utils.replaceAmt(row3[2]))
- #解析查询信息汇总
- def parseQueryRecordSum(dfObj):
- df = dfObj["df"];
- if not df.empty:
- queryRecordSumDfTmp = df[2:3];
- queryRecordSumDfTmp = queryRecordSumDfTmp.reset_index(drop=True)
- row0 = queryRecordSumDfTmp.loc[0, :]
- queryRecordSumDf.loc[queryRecordSumIndex, '近1月内的查询机构数-贷款审批'] =int(row0[0])
- queryRecordSumDf.loc[queryRecordSumIndex, '近1月内的查询机构数-信用卡审批'] =int(row0[1])
- queryRecordSumDf.loc[queryRecordSumIndex, '近1月内的查询次数-贷款审批'] =int(row0[2])
- queryRecordSumDf.loc[queryRecordSumIndex, '近1月内的查询次数-信用卡审批'] =int(row0[3])
- queryRecordSumDf.loc[queryRecordSumIndex, '近1月内的查询次数-本人查询'] =int(row0[4])
- queryRecordSumDf.loc[queryRecordSumIndex, '近2年内的查询次数-贷后管理'] =int(row0[5])
- queryRecordSumDf.loc[queryRecordSumIndex, '近2年内的查询次数-担保资格审查'] =int(row0[6])
- # 解析查询记录明细
- def parseQueryInfoDetail(dfObj):
- df = dfObj["df"];
- reportTime = queryInfo["reportTime"];
- if not df.empty:
- df = utils.replaceDateCol(df)
- df = df[1:df.index.size] # 去掉表头
- queryRecordDetailDf.loc[queryRecordDetailIndex, '近1月查询次数'] =qip.getLastMonthQueryTimes(df, 1, "",reportTime)
- queryRecordDetailDf.loc[queryRecordDetailIndex, '近3月查询次数'] =qip.getLastMonthQueryTimes(df, 3, "",reportTime)
- queryRecordDetailDf.loc[queryRecordDetailIndex, '近6月查询次数'] =qip.getLastMonthQueryTimes(df, 6, "",reportTime)
- queryRecordDetailDf.loc[queryRecordDetailIndex, '近12月查询次数'] =qip.getLastMonthQueryTimes(df, 12, "",reportTime)
- queryRecordDetailDf.loc[queryRecordDetailIndex, '最近1个月查询机构数'] =qip.getLastMonthQueryOrgTimes(df, 1, "", reportTime)
- queryRecordDetailDf.loc[queryRecordDetailIndex, '最近3个月查询机构数'] =qip.getLastMonthQueryOrgTimes(df, 3, "", reportTime)
- queryRecordDetailDf.loc[queryRecordDetailIndex, '最近6个月查询机构数'] =qip.getLastMonthQueryOrgTimes(df, 6, "", reportTime)
- queryRecordDetailDf.loc[queryRecordDetailIndex, '最近12个月查询机构数'] =qip.getLastMonthQueryOrgTimes(df, 12, "", reportTime)
- queryRecordDetailDf.loc[queryRecordDetailIndex, '最近24个月查询机构数'] =qip.getLastMonthQueryOrgTimes(df, 24, "", reportTime)
- queryRecordDetailDf.loc[queryRecordDetailIndex, '近3月查询次数贷款审批'] =qip.getLastMonthQueryTimes(df, 3, consts.loanApprove, reportTime)
- queryRecordDetailDf.loc[queryRecordDetailIndex, '近3月查询次数信用卡审批'] =qip.getLastMonthQueryTimes(df, 3, consts.creditCard, reportTime)
- queryRecordDetailDf.loc[queryRecordDetailIndex, '近6月查询次数贷款审批'] =qip.getLastMonthQueryTimes(df, 6, consts.loanApprove, reportTime)
- queryRecordDetailDf.loc[queryRecordDetailIndex, '近6月查询次数信用卡审批'] = qip.getLastMonthQueryTimes(df, 6, consts.creditCard, reportTime)
- queryRecordDetailDf.loc[queryRecordDetailIndex, '近12月查询次数贷款审批'] = qip.getLastMonthQueryTimes(df, 12, consts.loanApprove, reportTime)
- queryRecordDetailDf.loc[queryRecordDetailIndex, '近12月查询次数信用卡审批'] =qip.getLastMonthQueryTimes(df, 12, consts.creditCard, reportTime)
- queryRecordDetailDf.loc[queryRecordDetailIndex, '近3月查询机构数贷款审批'] =qip.getLastMonthQueryOrgTimes(df, 3, consts.loanApprove, reportTime)
- queryRecordDetailDf.loc[queryRecordDetailIndex, '近3月查询机构数信用卡审批'] =qip.getLastMonthQueryOrgTimes(df, 3, consts.creditCard, reportTime)
- queryRecordDetailDf.loc[queryRecordDetailIndex, '近6月查询机构数贷款审批'] =qip.getLastMonthQueryOrgTimes(df, 6, consts.loanApprove, reportTime)
- queryRecordDetailDf.loc[queryRecordDetailIndex, '近6月查询机构数信用卡审批'] = qip.getLastMonthQueryOrgTimes(df, 6, consts.creditCard,reportTime)
- queryRecordDetailDf.loc[queryRecordDetailIndex, '近12月查询机构数贷款审批'] = qip.getLastMonthQueryOrgTimes(df, 12, consts.loanApprove, reportTime)
- queryRecordDetailDf.loc[queryRecordDetailIndex, '近12月查询机构数信用卡审批'] = qip.getLastMonthQueryOrgTimes(df, 12, consts.creditCard,reportTime)
- queryRecordDetailDf.loc[queryRecordDetailIndex, '最近6个月担保资格审查查询次数'] = qip.getLastMonthQueryOrgTimes(df, 6, consts.insuranceAprove,reportTime)
- queryRecordDetailDf.loc[queryRecordDetailIndex, '近12个月担保资格审查查询次数'] = qip.getLastMonthQueryOrgTimes(df, 12, consts.insuranceAprove,reportTime)
- queryRecordDetailDf.loc[queryRecordDetailIndex, '最近6个月贷后管理查询次数'] = qip.getLastMonthQueryOrgTimes(df, 6, consts.loanAfterMgr,reportTime)
- queryRecordDetailDf.loc[queryRecordDetailIndex, '最近12个月贷后管理查询次数'] = qip.getLastMonthQueryOrgTimes(df, 12, consts.loanAfterMgr,reportTime)
- queryRecordDetailDf.loc[queryRecordDetailIndex, '最后一次查询距离现在的月数贷款审批'] = qip.getLastTimeQueryMonth(df, consts.loanApprove,reportTime)
- queryRecordDetailDf.loc[queryRecordDetailIndex, '最近24个月贷后管理查询次数'] = qip.getLastMonthQueryTimes(df, 24, consts.loanAfterMgr, reportTime)
- queryRecordDetailDf.loc[queryRecordDetailIndex, '最近24个月贷款审批审批次数'] = qip.getLastMonthQueryTimes(df, 24, consts.loanApprove, reportTime)
- queryRecordDetailDf.loc[queryRecordDetailIndex, '最近24个月信用卡审批查询次数'] = qip.getLastMonthQueryTimes(df, 24, consts.creditCard,reportTime)
- queryRecordDetailDf.loc[queryRecordDetailIndex, '最近24个月担保资格审查查询次数'] = qip.getLastMonthQueryTimes(df, 24, consts.insuranceAprove,reportTime)
- #解析住房公积金
- def parseHousingFundRcd(df):
- if not df.empty:
- lastHousingFundRcdDf = df.sort_values(by=["信息更新日期"] , ascending=(False)).reset_index(drop=True)
- lastHousingFundRcdDf = lastHousingFundRcdDf[0:1]#最新
- row1 = lastHousingFundRcdDf.loc[0,:].dropna().reset_index(drop=True)
- housingFundRcdDf.loc[housingFundRcdIndex, '参缴地'] =row1[1]
- housingFundRcdDf.loc[housingFundRcdIndex, '参缴日期'] =row1[2]
- housingFundRcdDf.loc[housingFundRcdIndex, '初缴月份'] =row1[3]#初缴日期
- housingFundRcdDf.loc[housingFundRcdIndex, '缴至月份'] =row1[4]
- housingFundRcdDf.loc[housingFundRcdIndex, '缴费状态'] =row1[5]
- housingFundRcdDf.loc[housingFundRcdIndex, '月缴存额'] =row1[6]
- housingFundRcdDf.loc[housingFundRcdIndex, '个人存缴比例'] =row1[7]
- housingFundRcdDf.loc[housingFundRcdIndex, '单位存缴比例'] =row1[8]
- housingFundRcdDf.loc[housingFundRcdIndex, '缴费单位'] =row1[9]#扣缴单位
- housingFundRcdDf.loc[housingFundRcdIndex, '信息更新日期'] =row1[10]
- reportTime = queryInfo["reportTime"];
- lastDateStr = utils.getLastMonthDate(reportTime,12)
- avgHousingFundDf = df[df['缴至月份']>=lastDateStr]
- housingFundRcdDf.loc[housingFundRcdIndex, '最近1年公积金平均值'] = round(np.mean(avgHousingFundDf['月缴存额']),2)
- lastDateStr = utils.getLastMonthDate(reportTime, 12*3)
- avgHousingFundDf = df[df['缴至月份'] >= lastDateStr]
- housingFundRcdDf.loc[housingFundRcdIndex, '最近3年公积金平均值']= round(np.mean(avgHousingFundDf['月缴存额']),2)
- #解析贷款还款记录指标
- def parseLoanMergeAndPayRecordDf(df,payRcdDf):
- if not df.empty and not payRcdDf.empty:
- #正常
- normalDf = df[(df['账户状态'] != '结清') & (df['账户状态'] != '转出') & (df['账户状态'] != '呆账')]
- overduePayRcdDf = payRcdDf[payRcdDf['账户编号'].isin(normalDf['账户编号'].values)]
- overduePayRcdDf = utils.replacePayRcdStatus(overduePayRcdDf)
- #临时保存,不用过滤还款状态为0的
- payRcdMaxOverdueDf = overduePayRcdDf;
- overduePayRcdDf = overduePayRcdDf[overduePayRcdDf['还款状态']>0]
- loanAccountInfoDf.loc[loanAccountInfoIndex, '当前贷款逾期账户数'] = overduePayRcdDf['账户编号'].unique().size
- loanAccountInfoDf.loc[loanAccountInfoIndex, '当前贷款逾期账户数占比'] = round(loanAccountInfoDf.loc[loanAccountInfoIndex, '当前贷款逾期账户数']/df.index.size,2)
- #存在逾期的贷款账户 非结清的过滤出逾期的账户号
- overdueLoanDf = normalDf[normalDf['账户编号'].isin(overduePayRcdDf['账户编号'].values)]
- loanAccountInfoDf.loc[loanAccountInfoIndex, '当前贷款逾期机构数'] = overdueLoanDf['管理机构'].unique().size
- loanAccountInfoDf.loc[loanAccountInfoIndex, '当前贷款逾期机构数占比'] = round(loanAccountInfoDf.loc[loanAccountInfoIndex, '当前贷款逾期机构数'] / df['管理机构'].unique().size,2)
- #还款记录按日期排序最近3笔的最大逾期期数
- loanAccountInfoDf.loc[loanAccountInfoIndex, '近1月贷款的最大逾期期数'] = prp.getPayRcdMaxOverdueNum(payRcdMaxOverdueDf,1);
- loanAccountInfoDf.loc[loanAccountInfoIndex, '近3月贷款的最大逾期期数'] = prp.getPayRcdMaxOverdueNum(payRcdMaxOverdueDf, 3);
- loanAccountInfoDf.loc[loanAccountInfoIndex, '近6月贷款的最大逾期期数'] = prp.getPayRcdMaxOverdueNum(payRcdMaxOverdueDf, 6);
- loanAccountInfoDf.loc[loanAccountInfoIndex, '近9月贷款的最大逾期期数'] = prp.getPayRcdMaxOverdueNum(payRcdMaxOverdueDf, 9);
- loanAccountInfoDf.loc[loanAccountInfoIndex, '近24月贷款的最大逾期期数'] = prp.getPayRcdMaxOverdueNum(payRcdMaxOverdueDf, 24);
- reportTime = queryInfo["reportTime"]
- loanAccountInfoDf.loc[loanAccountInfoIndex, '近24月贷款最大逾期距离现在的月数'] = prp.getPayRcdMaxOverdueNumMonth(payRcdMaxOverdueDf,normalDf,reportTime, 24);
- payStatus= ["G","D","C","N","M","1","2","3","4","5","6","7"]
- # 贷款24期还款记录次数 剔除结清 转出 呆账
- payRcdTimesDf = payRcdDf[payRcdDf['账户编号'].isin(normalDf['账户编号'].values)]
- #从“贷款信息”中提取,剔除“账户状态”为结清、转出、呆账、呆帐后,各账户的还款次数统计“24个月(账户)还款状态”包含"G","D","C","N","M"及数字的个数,MAX(各账户的还款次数)
- payRcdTimesDf = payRcdTimesDf[payRcdTimesDf['还款状态'].isin(payStatus)]
- payRcdTimes = payRcdTimesDf.groupby(['账户编号'])['还款状态'].count()
- #payRcdDf[(payRcdDf['还款状态']!='') & (payRcdDf['账户编号']==1)].index.size
- loanAccountInfoDf.loc[loanAccountInfoIndex, '贷款24期还款记录次数'] = np.max(payRcdTimes)
- #解析信贷交易明细-特殊交易
- def parseSpecialTrade(df):
- if not df.empty:
- creditTradeDetailHeader_specialTrade.loc[specialTradeIndex, '当前用户发生特殊交易的严重程度'] = np.max(df['严重程度'])#加工的指标
- maxChangeMonthIndex = np.argmax(np.abs(df['变更月数']))
- meanMonthValue = np.mean(np.abs(df['变更月数']))
- row0 = df.loc[maxChangeMonthIndex, :]
- settleDf = df[(df['特殊交易类型']=='提前结清') | (df['特殊交易类型']=='提前还款')]
- debtDf = df[(df['特殊交易类型'] == '以资抵债')]
- creditTradeDetailHeader_specialTrade.loc[specialTradeIndex, '用户发生特殊交易变更月数的最大差值'] = row0[3]
- creditTradeDetailHeader_specialTrade.loc[specialTradeIndex, '用户发生特殊交易变更月数的平均差值'] = round(meanMonthValue,2)
- creditTradeDetailHeader_specialTrade.loc[specialTradeIndex, '用户特殊交易涉及的发生金额的最大值'] = np.max(df['发生金额'])
- creditTradeDetailHeader_specialTrade.loc[specialTradeIndex, '用户特殊交易涉及的发生金额的平均值'] = round(np.mean(df['发生金额']),2)
- creditTradeDetailHeader_specialTrade.loc[specialTradeIndex, '用户所有帐户发生提前还款交易的次数统计'] = settleDf.index.size
- creditTradeDetailHeader_specialTrade.loc[specialTradeIndex, '用户所有帐户发生不良特殊交易的次数统计'] = debtDf.index.size;
- #信贷交易明细-非循环贷账户
- def parseLoanAccountInfo(df):
- if not df.empty:
- loanAccountNum = int(briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '非循环贷账户账户数'])
- normalDf = df[(df['账户状态'] != '结清') & (df['账户状态'] != '转出') & (df['账户状态'] != '呆账')].reset_index(drop=True)
- normalDf = normalDf[0:loanAccountNum]#根据非循环贷账户数进行计算进行截取
- creditTradeDetailDf_loanAccountInfo.loc[loanInfoIndex, '本月应还款(合计)'] = np.sum(normalDf['本月应还款'])
- creditTradeDetailDf_loanAccountInfo.loc[loanInfoIndex, '本月实还款(合计)'] = np.sum(normalDf['本月实还款'])
- creditTradeDetailDf_loanAccountInfo.loc[loanInfoIndex, '最近一次还款日期'] = np.max(normalDf['最近一次还款日期'])
- creditTradeDetailDf_loanAccountInfo.loc[loanInfoIndex, '当前一共逾期期数'] = np.sum(normalDf['当前逾期期数'])
- creditTradeDetailDf_loanAccountInfo.loc[loanInfoIndex, '当前一共逾期总额'] = np.sum(normalDf['当前逾期总额'])
- creditTradeDetailDf_loanAccountInfo.loc[loanInfoIndex, '逾期31-60天未还本金(合计)'] = np.sum(normalDf['逾期31-60天未还本金'])
- creditTradeDetailDf_loanAccountInfo.loc[loanInfoIndex, '逾期61-90天未还本金(合计)'] = np.sum(normalDf['逾期61-90天未还本金'])
- creditTradeDetailDf_loanAccountInfo.loc[loanInfoIndex, '逾期91-180天未还本金(合计)'] = np.sum(normalDf['逾期91-180天未还本金'])
- creditTradeDetailDf_loanAccountInfo.loc[loanInfoIndex, '逾期180天以上未还本金(合计)']= np.sum(normalDf['逾期180天以上未还本金'])
- #信贷交易明细-循环额度分账户
- def parseCycleCreditAccountInfo(df):
- if not df.empty:
- normalDf = df[(df['账户状态'] != '结清') & (df['账户状态'] != '转出') & (df['账户状态'] != '呆账')].reset_index(drop=True)
- loanAccountNum = int(briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '非循环贷账户账户数'])
- cycleCreditAccountNum = int(briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '循环额度下分账户账户数'])
- normalDf = normalDf[loanAccountNum:(loanAccountNum + cycleCreditAccountNum)]
- if not normalDf.empty:
- creditTradeDetailDf_cycleCreditAccountInfo.loc[cycleCreditAccountInfoIndex, '本月应还款(合计)'] = np.sum(normalDf['本月应还款'])
- creditTradeDetailDf_cycleCreditAccountInfo.loc[cycleCreditAccountInfoIndex, '本月实还款(合计)'] = np.sum(normalDf['本月实还款'])
- creditTradeDetailDf_cycleCreditAccountInfo.loc[cycleCreditAccountInfoIndex, '最近一次还款日期'] = np.max(normalDf['最近一次还款日期'])
- creditTradeDetailDf_cycleCreditAccountInfo.loc[cycleCreditAccountInfoIndex, '当前一共逾期期数'] = np.sum(normalDf['当前逾期期数'])
- creditTradeDetailDf_cycleCreditAccountInfo.loc[cycleCreditAccountInfoIndex, '当前一共逾期总额'] = np.sum(normalDf['当前逾期总额'])
- creditTradeDetailDf_cycleCreditAccountInfo.loc[cycleCreditAccountInfoIndex, '逾期31-60天未还本金(合计)'] = np.sum(normalDf['逾期31-60天未还本金'])
- creditTradeDetailDf_cycleCreditAccountInfo.loc[cycleCreditAccountInfoIndex, '逾期61-90天未还本金(合计)'] = np.sum(normalDf['逾期61-90天未还本金'])
- creditTradeDetailDf_cycleCreditAccountInfo.loc[cycleCreditAccountInfoIndex, '逾期91-180天未还本金(合计)'] = np.sum(normalDf['逾期91-180天未还本金'])
- creditTradeDetailDf_cycleCreditAccountInfo.loc[cycleCreditAccountInfoIndex, '逾期180天以上未还本金(合计)']= np.sum(normalDf['逾期180天以上未还本金'])
- #信贷交易明细-循环贷账户
- def parseCycleLoanAccountInfo(df):
- if not df.empty:
- normalDf = df[(df['账户状态'] != '结清') & (df['账户状态'] != '转出') & (df['账户状态'] != '呆账')]
- loanAccountNum = int(briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '非循环贷账户账户数'])
- cycleCreditAccountNum = int(briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '循环额度下分账户账户数'])
- cycleAccountNum = int(briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '循环贷账户账户数'])
- normalDf = normalDf[(loanAccountNum+cycleCreditAccountNum):normalDf.index.size]
- if not normalDf.empty:
- creditTradeDetailDf_cycleLoanAccountInfo.loc[cycleLoanAccountInfoIndex, '本月应还款(合计)'] = np.sum(normalDf['本月应还款'])
- creditTradeDetailDf_cycleLoanAccountInfo.loc[cycleLoanAccountInfoIndex, '本月实还款(合计)'] = np.sum(normalDf['本月实还款'])
- creditTradeDetailDf_cycleLoanAccountInfo.loc[cycleLoanAccountInfoIndex, '最近一次还款日期'] = np.max(normalDf['最近一次还款日期'])
- creditTradeDetailDf_cycleLoanAccountInfo.loc[cycleLoanAccountInfoIndex, '当前一共逾期期数'] = np.sum(normalDf['当前逾期期数'])
- creditTradeDetailDf_cycleLoanAccountInfo.loc[cycleLoanAccountInfoIndex, '当前一共逾期总额'] = np.sum(normalDf['当前逾期总额'])
- creditTradeDetailDf_cycleLoanAccountInfo.loc[cycleLoanAccountInfoIndex, '逾期31-60天未还本金(合计)'] = np.sum(normalDf['逾期31-60天未还本金'])
- creditTradeDetailDf_cycleLoanAccountInfo.loc[cycleLoanAccountInfoIndex, '逾期61-90天未还本金(合计)'] = np.sum(normalDf['逾期61-90天未还本金'])
- creditTradeDetailDf_cycleLoanAccountInfo.loc[cycleLoanAccountInfoIndex, '逾期91-180天未还本金(合计)'] = np.sum(normalDf['逾期91-180天未还本金'])
- creditTradeDetailDf_cycleLoanAccountInfo.loc[cycleLoanAccountInfoIndex, '逾期180天以上未还本金(合计)']= np.sum(normalDf['逾期180天以上未还本金'])
- #解析贷款账户信息指标
- def parseLoanMergeDf(df):
- if not df.empty:
- sortDf = df.sort_values(by=["账户关闭日期","借款金额(本金)"] , ascending=(False,False))
- sortDf = sortDf[sortDf['账户状态'] == '结清'];
- sortDf = sortDf.reset_index(drop=True)
- if not sortDf.empty:
- row0 = sortDf.loc[0, :]
- loanAccountInfo["lastSettleLoanAmt"] = row0['借款金额(本金)']
- loanAccountInfoDf.loc[loanAccountInfoIndex, '最近一笔结清贷款的贷款金额'] = row0['借款金额(本金)']
- openDate = dfParser.formatDate(row0['开立日期'])
- loanAccountInfoDf.loc[loanAccountInfoIndex, '最近一笔结清贷款的发放距今月数'] = utils.difMonthReportTime(openDate,queryInfo["reportTime"])
- settleDate = dfParser.formatDate(row0['账户关闭日期'])
- loanAccountInfoDf.loc[loanAccountInfoIndex, '最近一笔结清贷款的结清距今月数'] = utils.difMonthReportTime(settleDate,queryInfo["reportTime"])
- loanAccountInfoDf.loc[loanAccountInfoIndex, '历史贷款总法人机构数'] = df['管理机构'].unique().size
- loanAccountInfoDf.loc[loanAccountInfoIndex, '当前同时在用的贷款机构数'] = df[df['余额(本金)']>0]['管理机构'].unique().size
- statusDf = df[(df['账户状态'] != '结清') & (df['账户状态'] != '转出')]
- bankDf = statusDf[statusDf['管理机构'].str.contains('银行')]
- #没有记录
- if statusDf.index.size==0:
- isNotBankCust = -1
- else:
- if bankDf.index.size >0:#有一条以上不为结清,请包含银行
- isNotBankCust = 1;
- else:
- isNotBankCust = 0;
- loanAccountInfoDf.loc[loanAccountInfoIndex, '是否有非银行贷款客户'] = isNotBankCust
- #最严重的五级分类
- # fiveType = ""
- # for fiveTypeTmp in consts.fiveType:
- # fiveTypeDf = statusDf[statusDf['五级分类']==fiveTypeTmp];
- # if not fiveTypeDf.empty:
- # fiveType = fiveTypeTmp;
- # break;
- # loanAccountInfoDf.loc[loanAccountInfoIndex, '贷款五级分类'] = fiveType
- #当前贷款LTV
- # 从“贷款信息”中提取,剔除“账户状态”为结清及转出,并剔除“账户状态”为呆账且本金余额 = 0
- # 的记录后,SUM(本金余额) / SUM(贷款本金)
- # 如本金余额为空和贷款本金为0或为空,则当条记录不计算
- loanLtvDf = df[(df['账户状态'] != '结清') & (df['账户状态'] != '转出') & (df['借款金额(本金)']>0) & (df['余额(本金)']!='--')]
- badSetDf = loanLtvDf[~((loanLtvDf['账户状态'] == '呆账') & (loanLtvDf['余额(本金)']==0))]
- balanceSum = np.sum(badSetDf['余额(本金)'].astype('int'))
- loanAmtSum = np.sum(badSetDf['借款金额(本金)'].astype('int'))
- if(loanAmtSum !=0):
- loanAccountInfoDf.loc[loanAccountInfoIndex, '当前贷款LTV'] = round(np.divide(balanceSum,loanAmtSum),2)
- loanAccountInfoDf.loc[loanAccountInfoIndex, '当前贷款最高LTV'] = round(np.max(np.divide(badSetDf['余额(本金)'].astype('int'), badSetDf['借款金额(本金)'].astype('int'))),2)
- loanAccountInfoDf.loc[loanAccountInfoIndex, '当前贷款最低LTV'] = round(np.min(np.divide(badSetDf['余额(本金)'].astype('int'), badSetDf['借款金额(本金)'].astype('int'))), 2)
- loanAccountInfoDf.loc[loanAccountInfoIndex, '当前贷款平均LTV'] = round(np.mean(np.divide(badSetDf['余额(本金)'].astype('int'), badSetDf['借款金额(本金)'].astype('int'))), 2)
- #['个人住房商业贷款','个人商用房(含商住两用)贷款','个人住房公积金贷款','房'],
- houseLtvList = consts.houseLtvList;
- # houseLtvDf = badSetDf[badSetDf['业务种类'].isin(houseLtvList)]
- # if not houseLtvDf.empty:
- # loanAccountInfoDf.loc[loanAccountInfoIndex, '当前房贷LTV'] = round(np.divide(np.sum(houseLtvDf['余额(本金)'].astype('int')),np.sum(houseLtvDf['借款金额(本金)'].astype('int'))), 2)
- #['个人住房贷款','个人商用房(包括商住两用)贷款']
- loanAccountInfoDf.loc[loanAccountInfoIndex, '当前房贷LTV'] = lip.getCurLtv(badSetDf, houseLtvList)
- loanAccountInfoDf.loc[loanAccountInfoIndex, '当前贷款机构数量'] = loanLtvDf['管理机构'].unique().size
- cardLtvList = ['个人汽车消费贷款','车']
- loanAccountInfoDf.loc[loanAccountInfoIndex, '当前车贷LTV'] = lip.getCurLtv(badSetDf, cardLtvList)
- operateLtvList = ['个人经营性贷款']
- loanAccountInfoDf.loc[loanAccountInfoIndex, '当前经营贷LTV'] = lip.getCurLtv(badSetDf, operateLtvList)
- consumeLtvList = ['其他个人消费贷款']
- loanAccountInfoDf.loc[loanAccountInfoIndex, '当前消费贷LTV'] = lip.getCurLtv(badSetDf, consumeLtvList)
- bankLtvList = ['商业银行','外资银行','村镇银行','住房储蓄银行','财务公司']
- loanAccountInfoDf.loc[loanAccountInfoIndex, '当前银行贷LTV'] = lip.getCurBankLtv(badSetDf, bankLtvList)
- bankLtvList = ['消费金融公司','汽车金融公司','信托公司']# TODO
- loanAccountInfoDf.loc[loanAccountInfoIndex, '当前消金贷LTV'] = lip.getCurBankLtv(badSetDf, bankLtvList)
- smallLoanLtvList = ['小额信贷公司']
- loanAccountInfoDf.loc[loanAccountInfoIndex, '当前小贷LTV'] = lip.getCurBankLtv(badSetDf, smallLoanLtvList)
- #当前贷款最大逾期期数
- # 从“贷款信息”中提取,剔除“账户状态”为结清、转出、呆账、呆帐后,MAX(每笔贷款的当前逾期期数)
- loanOverdueLtvDf = df[(df['账户状态'] != '结清') & (df['账户状态'] != '转出') & (df['账户状态'] != '呆账')]
- if not loanOverdueLtvDf.empty:
- loanAccountInfoDf.loc[loanAccountInfoIndex, '当前贷款最大逾期期数'] = np.max(loanOverdueLtvDf['当前逾期期数'])
- loanAccountInfoDf.loc[loanAccountInfoIndex, '当前贷款最大逾期金额'] = np.max(loanOverdueLtvDf['当前逾期总额'])
- loanOverdueLtvDf=loanOverdueLtvDf.reset_index(drop=True)
- maxOverdueIndex = np.argmax(loanOverdueLtvDf['当前逾期期数'])
- loanAccountInfoDf.loc[loanAccountInfoIndex, '当前贷款最大逾期期数对应的最大逾期金额'] = loanOverdueLtvDf.loc[maxOverdueIndex,:]['当前逾期总额']
- loanAccountInfoDf.loc[loanAccountInfoIndex, '近3月开户最高贷款本金'] = lip.getLastLoanAmtMax(df,queryInfo["reportTime"],3)#贷款指标加工单独放到一个文件里
- loanAccountInfoDf.loc[loanAccountInfoIndex, '近3月开户最低贷款本金'] = lip.getLastLoanAmtMin(df, queryInfo["reportTime"], 3)
- loanAccountInfoDf.loc[loanAccountInfoIndex, '近3月开户平均贷款本金'] = lip.getLastLoanAmtAvg(df, queryInfo["reportTime"], 3)
- loanAccountInfoDf.loc[loanAccountInfoIndex, '近6月开户最高贷款本金'] = lip.getLastLoanAmtMax(df, queryInfo["reportTime"], 6)
- loanAccountInfoDf.loc[loanAccountInfoIndex, '近6月开户最低贷款本金'] = lip.getLastLoanAmtMin(df, queryInfo["reportTime"], 6)
- loanAccountInfoDf.loc[loanAccountInfoIndex, '近6月开户平均贷款本金'] = lip.getLastLoanAmtAvg(df, queryInfo["reportTime"], 6)
- loanAccountInfoDf.loc[loanAccountInfoIndex, '近12月开户最高贷款本金'] = lip.getLastLoanAmtMax(df, queryInfo["reportTime"], 12)
- loanAccountInfoDf.loc[loanAccountInfoIndex, '近12月开户最低贷款本金'] = lip.getLastLoanAmtMin(df, queryInfo["reportTime"], 12)
- loanAccountInfoDf.loc[loanAccountInfoIndex, '近12月开户平均贷款本金'] = lip.getLastLoanAmtAvg(df, queryInfo["reportTime"], 12)
- lastLoanDf = loanOverdueLtvDf;
- if not lastLoanDf.empty:
- loanAccountInfoDf.loc[loanAccountInfoIndex, '贷款最近一次还款日期距今时长'] = lip.getLastPayDateMinDays(lastLoanDf,queryInfo["reportTime"])
- normalDf = df[(df['账户状态'] == '正常') & (df['当前逾期期数'] == 0)]
- #未结清贷款总账户数:账户状态不等于结清和转出的记录数
- notSettleDf = df[(df['账户状态'] != '结清') & (df['账户状态'] != '转出')]
- if not notSettleDf.empty:
- loanAccountInfoDf.loc[loanAccountInfoIndex, '当前正常贷款账户数'] = normalDf.index.size
- loanAccountInfoDf.loc[loanAccountInfoIndex, '当前正常贷款账户数占比'] = round(normalDf.index.size/notSettleDf.index.size,2)
- #当前未结清贷款余额总和
- # ltvDf = tmpDf[tmpDf['业务种类'].isin(bizTypeList)]
- loanAccountInfoDf.loc[loanAccountInfoIndex, '当前未结清贷款余额总和'] = np.sum(notSettleDf['余额(本金)'])
- loanAccountInfoDf.loc[loanAccountInfoIndex, '当前未结清贷款余额总和'] = np.sum(notSettleDf['余额(本金)'])
- # 当前未结清住房贷款余额总和
- houseDf = notSettleDf[notSettleDf['业务种类'].isin(houseLtvList)]
- loanAccountInfoDf.loc[loanAccountInfoIndex, '当前未结清住房贷款余额总和'] = np.sum(houseDf['余额(本金)'])
- # 当前未结清汽车贷款余额总和
- cardDf = notSettleDf[notSettleDf['业务种类'].isin(cardLtvList)]
- loanAccountInfoDf.loc[loanAccountInfoIndex, '当前未结清汽车贷款余额总和'] = np.sum(cardDf['余额(本金)'])
- # 当前未结清个人经营性贷款余额总和
- operateLtvDf = notSettleDf[notSettleDf['业务种类'].isin(operateLtvList)]
- loanAccountInfoDf.loc[loanAccountInfoIndex, '当前未结清个人经营性贷款余额总和'] = np.sum(operateLtvDf['余额(本金)'])
- # 当前平均每月贷款余额总和
- loanAccountInfoDf.loc[loanAccountInfoIndex, '当前平均每月贷款余额总和'] = round(np.sum(normalDf['余额(本金)'])/12,2)
- #当前正常贷款账户余额
- loanAccountInfoDf.loc[loanAccountInfoIndex, '当前正常贷款账户余额'] = np.sum(normalDf['余额(本金)'])
- # "从“贷款信息”中提取,剔除结清、转出,当前正常贷款账户余额/未结清贷款总余额(本金余额加总)
- loanAccountInfoDf.loc[loanAccountInfoIndex, '当前正常贷款账户余额占总余额比'] = round(np.sum(normalDf['余额(本金)'])/np.sum(notSettleDf['余额(本金)']))
- settleDf = df[(df['账户状态'] == '结清')]
- loanAccountInfoDf.loc[loanAccountInfoIndex, '当前正常结清贷款账户数'] = settleDf.index.size
- loanAccountInfoDf.loc[loanAccountInfoIndex, '当前正常结清贷款账户数占比'] = round(settleDf.index.size/df.index.size,2)
- #贷款24期还款记录次数 TODO
- # 最近3个月个人消费贷款发放额度
- loanAccountInfoDf.loc[loanAccountInfoIndex, '贷款本月实还款金额'] = np.sum(loanOverdueLtvDf['本月应还款'])
- loanAccountInfoDf.loc[loanAccountInfoIndex, '最近3个月个人消费贷款发放额度'] = lip.getLastPerConsumeAmt(df,3,queryInfo["reportTime"])
- loanAccountInfoDf.loc[loanAccountInfoIndex, '最近6个月个人消费贷款发放额度'] = lip.getLastPerConsumeAmt(df, 6,queryInfo["reportTime"])
- loanAccountInfoDf.loc[loanAccountInfoIndex, '最近12个月个人消费贷款发放额度'] = lip.getLastPerConsumeAmt(df, 12,queryInfo["reportTime"])
- #未结清贷款平均剩余还款期数
- payPieDf = notSettleDf[notSettleDf['还款期数']!='--']
- if payPieDf.index.size!=0:
- loanAccountInfoDf.loc[loanAccountInfoIndex, '未结清贷款平均剩余还款期数'] = round(np.sum(payPieDf['剩余还款期数'])/payPieDf.index.size,2)
- # 当前贷款本月应还金额总和
- loanAccountInfoDf.loc[loanAccountInfoIndex, '当前贷款本月应还金额总和'] = np.sum(notSettleDf['本月应还款'])
- # 当前贷款本月实还金额总额
- loanAccountInfoDf.loc[loanAccountInfoIndex, '当前贷款本月实还金额总额'] = np.sum(notSettleDf['本月实还款'])
- #解析贷记卡账户信息指标
- def parseCreditCardMergeDf(df):
- if not df.empty:
- # 历史信用卡总法人机构数
- # creditCardAccountInfoDf.loc[creditCardAccountInfoIndex,'历史信用卡总法人机构数'] = df['发卡机构'].unique().size
- # creditCardUseDf = df[df['已用额度']>0];
- # creditCardAccountInfoDf.loc[creditCardAccountInfoIndex,'当前同时在用的信用卡机构数'] = creditCardUseDf['发卡机构'].unique().size
- #统一排除
- creditDf = df[(df['币种'] == '人民币元') & (df['账户状态'] != '未激活') & (df['账户状态'] != '销户') & (df['账户状态'] != '呆账')]
- totalAmtDf = df[(df['币种'] == '人民币元') & (df['账户状态'] != '未激活') & (df['账户状态'] != '销户') & (df['账户状态'] != '呆账')]
- #大额专项分期额度(合计)
- # 已用分期金额(合计)
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '大额专项分期额度(合计)'] = np.sum(creditDf['大额专项分期额度'])
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '已用分期金额(合计)'] = np.sum(creditDf['已用分期金额'])
- # creditCardAccountInfoDf.loc[creditCardAccountInfoIndex,'贷记卡账户当前总额度'] = cip.getMaxCreditAmt(creditDf)
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '最近新发放的3张贷记卡平均额度'] = cip.getAvgCreditAmt(creditDf)
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '贷记卡额度使用率超过90%的机构数占比'] = cip.getUseRate(creditDf,df,0.9)
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '贷记卡额度使用率超过100%的机构数占比'] = cip.getUseRate(creditDf, totalAmtDf, 1)
- # 从“贷记卡信息”中提取,计算授信额度时剔除销户,计算已用额度时剔除呆账、呆帐、销户后,SUM(各账户已用额度) / SUM(各账户授信额度)
- useCreditDf = df[(df['币种'] == '人民币元') & (df['账户状态'] != '销户') & (df['账户状态'] != '呆账')]
- totalCreditDf = df[(df['币种'] == '人民币元') & (df['账户状态'] != '销户')]
- totalCreditAmt = np.sum(totalCreditDf['账户授信额度'])
- if totalCreditAmt != 0:#授信额度不能为0
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '贷记卡账户当前总额度使用率'] = round(np.sum(useCreditDf['已用额度'])/np.sum(totalCreditDf['账户授信额度']),2)
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '贷记卡账户最高使用额度总的使用率'] = round(np.sum(useCreditDf['最大使用额']) / np.sum(totalCreditDf['账户授信额度']), 2)
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '贷记卡账户近6月平均额度总的使用率'] = round(np.sum(useCreditDf['最近6个月平均使用额度']) / np.sum(totalCreditDf['账户授信额度']), 2)
- # creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '当前贷记卡最大逾期期数'] = np.max(creditDf['当前逾期期数'])#用于计算
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '当前贷记卡最大逾期金额'] = np.max(creditDf['当前逾期总额'])
- if not creditDf.empty:
- creditDf = creditDf.reset_index(drop=True)
- maxOverdueIndex = np.argmax(creditDf['当前逾期期数'])
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '当前贷记卡最大逾期期数对应的最大逾期金额'] = creditDf.loc[maxOverdueIndex,:]['当前逾期总额']
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '近3月开卡最高额度'] = cip.getLastMonthMaxCreditAmt(df,queryInfo["reportTime"],3)
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '近3月开卡最低额度'] = cip.getLastMonthMinCreditAmt(df, queryInfo["reportTime"], 3)
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '近3月开卡平均额度'] = cip.getLastMonthAvgCreditAmt(df, queryInfo["reportTime"], 3)
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '近6月开卡最高额度'] = cip.getLastMonthMaxCreditAmt(df, queryInfo["reportTime"], 6)
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '近6月开卡最低额度'] = cip.getLastMonthMinCreditAmt(df, queryInfo["reportTime"], 6)
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '近6月开卡平均额度'] = cip.getLastMonthAvgCreditAmt(df, queryInfo["reportTime"], 6)
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '近12月开卡最高额度'] = cip.getLastMonthMaxCreditAmt(df, queryInfo["reportTime"], 12)
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '近12月开卡最低额度'] = cip.getLastMonthMinCreditAmt(df, queryInfo["reportTime"], 12)
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '近12月开卡平均额度'] = cip.getLastMonthAvgCreditAmt(df, queryInfo["reportTime"], 12)
- if not creditDf.empty:
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '贷记卡最近一次还款日期距今时长'] = cip.getLastPayDateMinDays(creditDf,queryInfo["reportTime"])
- paySo = np.sum(creditDf['本月应还款'])
- if(paySo)!=0:
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '贷记卡还款比例'] = round(np.sum(creditDf['本月实还款'])/np.sum(creditDf['本月应还款']),2)
- creditDfTmp = creditDf[creditDf['本月应还款']>0]
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '贷记卡最高还款比例'] = round(np.max(np.divide(creditDfTmp['本月实还款'] , creditDfTmp['本月应还款'])), 2)
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '贷记卡最低还款比例'] = round(np.min(np.divide(creditDfTmp['本月实还款'] , creditDfTmp['本月应还款'])), 2)
- normalDf = df[(df['币种'] == '人民币元') & (df['账户状态'] == '正常') & (df['当前逾期期数']==0)];
- notCloseDf = df[(df['账户状态'] != '销户')]
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '当前正常贷记卡账户数'] = normalDf.index.size
- if not notCloseDf.empty and not normalDf.empty:
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '当前正常贷记卡账户数占比'] = round(normalDf.index.size/notCloseDf.index.size,2)
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '当前正常贷记卡已用额度'] = np.sum(normalDf['已用额度'])
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '当前正常且有余额的贷记卡账户数'] = normalDf[normalDf['已用额度']>0].index.size
- if not creditDf.empty:
- creditUseAmt = np.sum(creditDf['已用额度'])
- if creditUseAmt!=0:
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '当前正常贷记卡账户余额占总余额比'] = round(np.sum(normalDf['已用额度']) / np.sum(creditDf['已用额度']), 2)
- if notCloseDf.empty:
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '当前正常且有余额的贷记卡账户数占比'] = -99
- else:
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '当前正常且有余额的贷记卡账户数占比'] = \
- round(creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '当前正常且有余额的贷记卡账户数']/notCloseDf.index.size,3)
- #当前正常贷记卡账户余额占总余额比
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '当前贷记卡本月实还金额总和'] = np.sum(creditDf['本月实还款'])
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '当前贷记卡本月应还金额总和'] = np.sum(creditDf['本月应还款'])
- maxAmtDf = df[(df['币种'] == '人民币元')]
- if not maxAmtDf.empty:
- maxAmtDf = maxAmtDf.reset_index(drop=True)
- maxAmtIndex = np.argmax(maxAmtDf['账户授信额度'])
- maxOpenDate = maxAmtDf.loc[maxAmtIndex,:]['开立日期'];
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '额度最高的人民币贷记卡开卡距今月份数'] = utils.difMonthReportTime(maxOpenDate,queryInfo["reportTime"]);
- # 名下贷记卡数量-状态正常
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '名下贷记卡数量-状态正常'] = df[(df['账户状态'] != '销户')].index.size
- # 名下贷记卡数量-状态未激活
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '名下贷记卡数量-状态未激活'] = df[(df['账户状态'] == '未激活')].index.size
- # 名下贷记卡数量-状态异常--异常包含(2-冻结,3-止付,5-呆帐,10-其他)
- abnormalList = ['冻结','止付','呆帐','其他']
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '名下贷记卡数量-状态异常'] = df[(df['账户状态'].isin(abnormalList))].index.size
- # 名下贷记卡比例-状态正常
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '名下贷记卡比例-状态正常'] = round(creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '名下贷记卡数量-状态正常'] / df.index.size,2)
- # 名下贷记卡比例-状态未激活
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '名下贷记卡比例-状态未激活'] =round(creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '名下贷记卡数量-状态未激活'] / df.index.size,2)
- # 名下贷记卡比例-状态异常
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '名下贷记卡比例-状态异常'] = round(creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '名下贷记卡数量-状态异常'] / df.index.size,2)
- #解析准贷记卡账户信息指标
- def parseCreditCardMergeDfZ(df,payRcd):
- if not df.empty:
- overdueCreditCardRcdDf = payRcd[payRcd['账户编号'].isin(df['账户编号'].values)];
- overdueCreditCardRcdDf = utils.replacePayRcdStatusOverdue(overdueCreditCardRcdDf)
- creditCardAccountInfoDfZ.loc[creditCardAccountInfoIndexZ, '本月应还款(合计)'] = np.nansum(df['透支余额'])
- creditCardAccountInfoDfZ.loc[creditCardAccountInfoIndexZ, '本月实还款(合计)'] = np.nansum(df['本月实还款'])
- creditCardAccountInfoDfZ.loc[creditCardAccountInfoIndexZ, '最近一次还款日期'] = np.max(df['最近一次还款日期'])
- creditCardAccountInfoDfZ.loc[creditCardAccountInfoIndexZ, '当前一共透支期数'] = cip.getCurOverdueNum(overdueCreditCardRcdDf);
- creditCardAccountInfoDfZ.loc[creditCardAccountInfoIndexZ, '当前一共透支总额'] = np.nansum(df['透支余额'])
- creditCardAccountInfoDfZ.loc[creditCardAccountInfoIndexZ, '透支180天以上未支付余额(合计)'] = np.nansum(df['透支180天以上未付余额'])
- creditDf = df[(df['账户状态'] != '未激活') & (df['账户状态'] != '销户')]
- if not creditDf.empty:
- totalAmt = np.nansum(creditDf['账户授信额度'])
- creditAmt = np.nansum(creditDf['透支余额'])
- if totalAmt !=0:
- #从“贷记卡信息”中提取,剔除未激活、销户后,所有账户透支金额/所有账户账户授信额度。
- creditCardAccountInfoDfZ.loc[creditCardAccountInfoIndexZ, '全部准贷记卡账户当前总额度使用率']=round(creditAmt/totalAmt,2)
- #从“贷记卡信息”中提取,剔除未激活、销户后,MAX(单账户最高透支金额/单账户授信额度)
- creditMaxDf = creditDf[creditDf['账户授信额度']>0]
- if not creditMaxDf.empty:
- creditMaxDf = creditMaxDf.fillna(0.0)
- creditCardAccountInfoDfZ.loc[creditCardAccountInfoIndexZ, '准贷记卡账户最高使用额度总的使用率'] = round(np.max(np.divide(creditMaxDf['最大透支余额'],creditMaxDf['账户授信额度'])),2)
- creditMaxDf = creditDf[creditDf['最大透支余额'] > 0]
- if not creditMaxDf.empty:
- creditCardAccountInfoDfZ.loc[creditCardAccountInfoIndexZ, '当前准贷记卡最大透支金额'] = np.max(creditMaxDf['最大透支余额'])
- #从“贷记卡信息”中提取,剔除未激活、销户后,当前透支准贷记卡账户数/总准贷记卡账户数,透支账户判断:透支余额不为0的账户
- creditDfTmp = creditDf[creditDf['透支余额']>0]
- creditCardAccountInfoDfZ.loc[creditCardAccountInfoIndexZ, '当前准贷记卡透支账户数占比'] = round(creditDfTmp.index.size / creditDf.index.size,2)
- creditCardAccountInfoDfZ.loc[creditCardAccountInfoIndexZ, '当前准贷记卡本月应还金额总和'] = np.nansum(df['透支余额'])
- creditCardAccountInfoDfZ.loc[creditCardAccountInfoIndexZ, '当前准贷记卡本月实还金额总和'] = np.nansum(df['本月实还款'])
- #解析使用率 TODO 使用汇总计算还是使用明细计算
- def parseUseRate():
- # useRateDf.loc[useRateIndex, '贷记卡账户使用率(已用额度/授信总额)']
- # 从“信贷交易授信及负债信息概要”中“非循环贷账户信息汇总”、“循环额度下分账户信息汇总”、“循环贷账户信息汇总”、“贷记卡账户信息汇总”和“准贷记卡账户信息汇总”里提取,SUM(
- # 所有“余额”、“已用额度”和“透支余额”) / SUM(所有“授信总额”和“授信额度”)
- loanUseAmt = briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '非循环贷账户余额']
- cycleCreditUseAmt = briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '循环额度下分账户余额']
- cycleUseAmt = briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '循环贷账户余额']
- creditUseAmt = briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '贷记卡已用额度']
- creditAmtUseZ = briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '准贷记卡已用额度']
- loanTotalAmt = briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '非循环贷账户授信总额']
- cycleCreditTotalAmt = briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '循环额度下分账户授信总额']
- cycleTotalAmt = briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '循环贷账户授信总额']
- creditTotalAmt = briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '贷记卡授信总额']
- creditAmtTotalZ = briefInfoDf_loanTradeCreditInfo.loc[loanTradeCreditInfoIndex, '准贷记卡授信总额']
- # if str(loanUseAmt)=="nan":
- # loanUseAmt = 0;
- # if str(cycleCreditUseAmt) == "nan":
- # loanUseAmt = 0;
- # if str(cycleCreditUseAmt) == "nan":
- # loanUseAmt = 0;
- useAmt = loanUseAmt+cycleCreditUseAmt+cycleUseAmt+creditUseAmt+creditAmtUseZ
- totalAmt = loanTotalAmt+cycleCreditTotalAmt+cycleTotalAmt+creditTotalAmt+creditAmtTotalZ
- if totalAmt !=0:
- useRateDf.loc[useRateIndex, '全账户使用率(已用额度/授信总额)'] = round(useAmt / totalAmt,2)
- if loanTotalAmt!=0:
- useRateDf.loc[useRateIndex, '非循环贷账户使用率(已用额度/授信总额)'] = round(loanUseAmt / loanTotalAmt,2)
- if cycleCreditTotalAmt !=0:
- useRateDf.loc[useRateIndex, '循环额度下分账户使用率(已用额度/授信总额)'] = round(cycleCreditTotalAmt / cycleCreditTotalAmt,2)
- if cycleTotalAmt !=0:
- useRateDf.loc[useRateIndex, '循环贷账户使用率(已用额度/授信总额)'] = round(cycleUseAmt / cycleTotalAmt,2)
- if creditTotalAmt !=0:
- useRateDf.loc[useRateIndex, '贷记卡账户使用率(已用额度/授信总额)'] = round(creditUseAmt / creditTotalAmt,2)
- if creditAmtTotalZ !=0:
- useRateDf.loc[useRateIndex, '准贷记卡账户使用率(已用额度/授信总额)'] = round(creditAmtUseZ / creditAmtTotalZ,2)
- #解析开户数
- def parseOpenAccount(loanDf,creditCardDf,creditCardDfZ,recoveryInfoMergeDf,loanPayRecordMergeDf,creditCardPayRecordMergeDf,creditCardPayRecordMergeDfZ):
- reportTime = queryInfo["reportTime"];
- openAccountDf.loc[openAccountIndex, '近3个月全账户开户数'] = cip.getOpenAccount(loanDf,reportTime,3)+cip.getOpenAccount(creditCardDf,reportTime,3)+cip.getOpenAccount(creditCardDfZ,reportTime,3)
- openAccountDf.loc[openAccountIndex, '近6个月全账户开户数'] = cip.getOpenAccount(loanDf,reportTime,6)+cip.getOpenAccount(creditCardDf,reportTime,6)+cip.getOpenAccount(creditCardDfZ,reportTime,6)
- openAccountDf.loc[openAccountIndex, '近9个月全账户开户数'] = cip.getOpenAccount(loanDf,reportTime,9)+cip.getOpenAccount(creditCardDf,reportTime,9)+cip.getOpenAccount(creditCardDfZ,reportTime,9)
- openAccountDf.loc[openAccountIndex, '近12个月全账户开户数'] = cip.getOpenAccount(loanDf,reportTime,12)+cip.getOpenAccount(creditCardDf,reportTime,12)+cip.getOpenAccount(creditCardDfZ,reportTime,12)
- openAccountDf.loc[openAccountIndex, '近24个月全账户开户数'] = cip.getOpenAccount(loanDf,reportTime,24)+cip.getOpenAccount(creditCardDf,reportTime,24)+cip.getOpenAccount(creditCardDfZ,reportTime,24)
- openAccountDf.loc[openAccountIndex, '近3个月消费金融类账户开户数'] = lip.getOpenAccount(loanDf,reportTime,3,consts.bankList)
- openAccountDf.loc[openAccountIndex, '近6个月消费金融类账户开户数'] = lip.getOpenAccount(loanDf,reportTime,6,consts.bankList)
- openAccountDf.loc[openAccountIndex, '近9个月消费金融类账户开户数'] = lip.getOpenAccount(loanDf,reportTime,9,consts.bankList)
- openAccountDf.loc[openAccountIndex, '近12个月消费金融类账户开户数'] = lip.getOpenAccount(loanDf,reportTime,12,consts.bankList)
- openAccountDf.loc[openAccountIndex, '近24个月消费金融类账户开户数'] = lip.getOpenAccount(loanDf,reportTime,24,consts.bankList)
- openAccountDf.loc[openAccountIndex, '近3个月贷款账户开户数'] = lip.getOpenAccount(loanDf,reportTime,3,"")
- openAccountDf.loc[openAccountIndex, '近6个月贷款账户开户数'] = lip.getOpenAccount(loanDf,reportTime,6,"")
- openAccountDf.loc[openAccountIndex, '近9个月贷款账户开户数'] = lip.getOpenAccount(loanDf,reportTime,9,"")
- openAccountDf.loc[openAccountIndex, '近12个月贷款账户开户数'] = lip.getOpenAccount(loanDf,reportTime,12,"")
- openAccountDf.loc[openAccountIndex, '近24个月贷款账户开户数'] = lip.getOpenAccount(loanDf,reportTime,24,"")
- openAccountDf.loc[openAccountIndex, '近3个月贷记卡账户开户数'] = cip.getOpenAccount(creditCardDf,reportTime,3)
- openAccountDf.loc[openAccountIndex, '近6个月贷记卡账户开户数'] = cip.getOpenAccount(creditCardDf,reportTime,6)
- openAccountDf.loc[openAccountIndex, '近9个月贷记卡账户开户数'] = cip.getOpenAccount(creditCardDf,reportTime,9)
- openAccountDf.loc[openAccountIndex, '近12个月贷记卡账户开户数'] = cip.getOpenAccount(creditCardDf,reportTime,12)
- openAccountDf.loc[openAccountIndex, '近24个月贷记卡账户开户数'] = cip.getOpenAccount(creditCardDf,reportTime,24)
- openAccountDf.loc[openAccountIndex, '近3个月准贷记卡账户开户数'] = cip.getOpenAccount(creditCardDfZ,reportTime,3)
- openAccountDf.loc[openAccountIndex, '近6个月准贷记卡账户开户数'] = cip.getOpenAccount(creditCardDfZ,reportTime,6)
- openAccountDf.loc[openAccountIndex, '近9个月准贷记卡账户开户数'] = cip.getOpenAccount(creditCardDfZ,reportTime,9)
- openAccountDf.loc[openAccountIndex, '近12个月准贷记卡账户开户数'] = cip.getOpenAccount(creditCardDfZ,reportTime,12)
- openAccountDf.loc[openAccountIndex, '近24个月准贷记卡账户开户数'] = cip.getOpenAccount(creditCardDfZ,reportTime,24)
- #从“信贷交易信息明细”中“非循环贷账户”、“循环额度下分账户”、“循环贷账户”、“贷记卡账户”和“准贷记卡账户”里提取,5年里账户还款状态出现“1、2、3、4、5、6、7、D、Z、G、B”的账户数/所有账户数
- overdueLoanPayRcdDf = loanPayRecordMergeDf[loanPayRecordMergeDf['账户编号'].isin(loanDf['账户编号'].values)]
- overdueLoanPayRcdDf = utils.replacePayRcdStatusOverdue(overdueLoanPayRcdDf)
- overdueLoanPayRcdDf = overdueLoanPayRcdDf[overdueLoanPayRcdDf['还款状态'] > 0]
- overdueCreditPayRcdDf = creditCardPayRecordMergeDf[creditCardPayRecordMergeDf['账户编号'].isin(creditCardDf['账户编号'].values)]
- overdueCreditPayRcdDf = utils.replacePayRcdStatusOverdue(overdueCreditPayRcdDf)
- overdueCreditPayRcdDf = overdueCreditPayRcdDf[overdueCreditPayRcdDf['还款状态'] > 0]
- overdueCreditPayRcdDfZ = creditCardPayRecordMergeDfZ[creditCardPayRecordMergeDfZ['账户编号'].isin(creditCardDfZ['账户编号'].values)]
- overdueCreditPayRcdDfZ = utils.replacePayRcdStatusOverdue(overdueCreditPayRcdDfZ)
- overdueCreditPayRcdDfZ = overdueCreditPayRcdDfZ[overdueCreditPayRcdDfZ['还款状态'] > 0]
- loanAccountNum = loanPayRecordMergeDf['账户编号'].unique().size
- creditAccountNum = creditCardPayRecordMergeDf['账户编号'].unique().size
- creditAccountNumZ = creditCardPayRecordMergeDfZ['账户编号'].unique().size
- overdueLoanNum = overdueLoanPayRcdDf['账户编号'].unique().size
- overdueCreditNum = overdueCreditPayRcdDf['账户编号'].unique().size
- overdueCreditNumZ = overdueCreditPayRcdDfZ['账户编号'].unique().size
- openAccountDf.loc[openAccountIndex, '有过逾期记录的账户/全账户数'] = round((overdueLoanNum+overdueCreditNum+overdueCreditNumZ)/(loanAccountNum+creditAccountNum+creditAccountNumZ),2)
- otherPerLoanDf = loanDf[loanDf['业务种类'].isin(consts.otherPerLoan)]
- otherPerLoanNum = otherPerLoanDf.index.size;
- overdueOtherPerLoanNum = otherPerLoanDf[otherPerLoanDf['账户编号'].isin(overdueLoanPayRcdDf['账户编号'].values)].index.size;
- if otherPerLoanNum!=0:
- openAccountDf.loc[openAccountIndex, '有过逾期记录的消费金融类账户/全消费金融类账户数'] = round(overdueOtherPerLoanNum/otherPerLoanNum,2)
- if loanAccountNum!=0:
- openAccountDf.loc[openAccountIndex, '有过逾期记录的贷款账户/全贷款账户数'] = round(overdueLoanNum/loanAccountNum,2)
- if creditAccountNum!=0:
- openAccountDf.loc[openAccountIndex, '有过逾期记录的贷记卡账户/全贷记卡账户数'] = round(overdueCreditNum/creditAccountNum,2)
- if creditAccountNumZ!=0:
- openAccountDf.loc[openAccountIndex, '有过透支记录的准贷记卡账户/全准贷记卡账户数']= round(overdueCreditNumZ/creditAccountNumZ,2)
- #解析24期还款状态指标
- def parsePayRcdStatus(loanMergeDf, creditCardMergeDf, creditCardMergeDfZ,loanPayRecordMergeDf,creditCardPayRecordMergeDf,creditCardPayRecordMergeDfZ):
- #creditCardPayRecordMergeDf
- # 去掉外币
- creditCardMergeDf = creditCardMergeDf[creditCardMergeDf['币种']=='人民币元']
- creditCardPayRecordMergeDf = creditCardPayRecordMergeDf[creditCardPayRecordMergeDf['账户编号'].isin(creditCardMergeDf['账户编号'].values)]
- reportTime = queryInfo["reportTime"];
- payRcdStatusDf.loc[payRcdStatusIndex, '贷款账户近3月逾期期数大于或等于“1”的次数'] = prp.getLoanOverdueTimes(loanPayRecordMergeDf,reportTime,1,3)
- payRcdStatusDf.loc[payRcdStatusIndex, '贷款账户近6月逾期期数大于或等于“1”的次数'] = prp.getLoanOverdueTimes(loanPayRecordMergeDf,reportTime,1,6)
- payRcdStatusDf.loc[payRcdStatusIndex, '贷款账户近12月逾期期数大于或等于“1”的次数'] = prp.getLoanOverdueTimes(loanPayRecordMergeDf,reportTime,1,12)
- payRcdStatusDf.loc[payRcdStatusIndex, '贷款账户近24月逾期期数大于或等于“1”的次数'] = prp.getLoanOverdueTimes(loanPayRecordMergeDf,reportTime,1,24)
- payRcdStatusDf.loc[payRcdStatusIndex, '贷款账户近6月逾期期数大于或等于“2”的次数'] = prp.getLoanOverdueTimes(loanPayRecordMergeDf,reportTime,2,6)
- payRcdStatusDf.loc[payRcdStatusIndex, '贷款账户近12月逾期期数大于或等于“2”的次数'] = prp.getLoanOverdueTimes(loanPayRecordMergeDf,reportTime,2,12)
- payRcdStatusDf.loc[payRcdStatusIndex, '贷款账户近24月逾期期数大于或等于“2”的次数'] = prp.getLoanOverdueTimes(loanPayRecordMergeDf,reportTime,2,24)
- payRcdStatusDf.loc[payRcdStatusIndex, '贷款账户近6月逾期期数大于或等于“3”的次数'] = prp.getLoanOverdueTimes(loanPayRecordMergeDf,reportTime,3,6)
- payRcdStatusDf.loc[payRcdStatusIndex, '贷款账户近12月逾期期数大于或等于“3”的次数'] = prp.getLoanOverdueTimes(loanPayRecordMergeDf,reportTime,3,12)
- payRcdStatusDf.loc[payRcdStatusIndex, '贷款账户近24月逾期期数大于或等于“3”的次数'] = prp.getLoanOverdueTimes(loanPayRecordMergeDf,reportTime,3,24)
- payRcdStatusDf.loc[payRcdStatusIndex, '贷款账户近12月逾期期数大于或大等于“4”的次数'] = prp.getLoanOverdueTimes(loanPayRecordMergeDf,reportTime,4,12)
- payRcdStatusDf.loc[payRcdStatusIndex, '贷款账户近24月逾期期数大于或等于“4”的次数'] = prp.getLoanOverdueTimes(loanPayRecordMergeDf,reportTime,4,24)
- payRcdStatusDf.loc[payRcdStatusIndex, '贷记卡账户近3月逾期期数大于或等于“1”的次数'] = cip.getLoanOverdueTimes(creditCardPayRecordMergeDf,reportTime,1,3)
- payRcdStatusDf.loc[payRcdStatusIndex, '贷记卡账户近6月逾期期数大于或等于“1”的次数'] = cip.getLoanOverdueTimes(creditCardPayRecordMergeDf,reportTime,1,6)
- payRcdStatusDf.loc[payRcdStatusIndex, '贷记卡账户近12月逾期期数大于或等于“1”的次数'] = cip.getLoanOverdueTimes(creditCardPayRecordMergeDf,reportTime,1,12)
- payRcdStatusDf.loc[payRcdStatusIndex, '贷记卡账户近24月逾期期数大于或等于“1”的次数'] = cip.getLoanOverdueTimes(creditCardPayRecordMergeDf,reportTime,1,24)
- payRcdStatusDf.loc[payRcdStatusIndex, '贷记卡账户近6月逾期期数大于或等于“2”的次数'] = cip.getLoanOverdueTimes(creditCardPayRecordMergeDf,reportTime,2,6)
- payRcdStatusDf.loc[payRcdStatusIndex, '贷记卡账户近12月逾期期数大于或等于“2”的次数'] = cip.getLoanOverdueTimes(creditCardPayRecordMergeDf,reportTime,2,12)
- payRcdStatusDf.loc[payRcdStatusIndex, '贷记卡账户近24月逾期期数大于或等于“2”的次数'] = cip.getLoanOverdueTimes(creditCardPayRecordMergeDf,reportTime,2,24)
- payRcdStatusDf.loc[payRcdStatusIndex, '贷记卡账户近6月逾期期数大于或等于“3”的次数'] = cip.getLoanOverdueTimes(creditCardPayRecordMergeDf,reportTime,3,6)
- payRcdStatusDf.loc[payRcdStatusIndex, '贷记卡账户近12月逾期期数大于或等于“3”的次数'] = cip.getLoanOverdueTimes(creditCardPayRecordMergeDf,reportTime,3,12)
- payRcdStatusDf.loc[payRcdStatusIndex, '贷记卡账户近24月逾期期数大于或等于“3”的次数'] = cip.getLoanOverdueTimes(creditCardPayRecordMergeDf,reportTime,3,24)
- payRcdStatusDf.loc[payRcdStatusIndex, '贷记卡账户近12月逾期期数大于或等于“4”的次数'] = cip.getLoanOverdueTimes(creditCardPayRecordMergeDf,reportTime,4,12)
- payRcdStatusDf.loc[payRcdStatusIndex, '贷记卡账户近24月逾期期数大于或等于“4”的次数'] = cip.getLoanOverdueTimes(creditCardPayRecordMergeDf,reportTime,4,24)
- payRcdStatusDf.loc[payRcdStatusIndex, '准贷记卡账户近6月逾期期数大于或等于“3”的次数'] = cip.getLoanOverdueTimes(creditCardPayRecordMergeDfZ,reportTime,3,6)
- payRcdStatusDf.loc[payRcdStatusIndex, '准贷记卡账户近12月逾期期数大于或等于“3”的次数'] = cip.getLoanOverdueTimes(creditCardPayRecordMergeDfZ,reportTime,3,12)
- payRcdStatusDf.loc[payRcdStatusIndex, '准贷记卡账户近24月逾期期数大于或等于“3”的次数'] = cip.getLoanOverdueTimes(creditCardPayRecordMergeDfZ,reportTime,3,24)
- payRcdStatusDf.loc[payRcdStatusIndex, '准贷记卡账户近6月逾期期数大于或等于“4”的次数'] = cip.getLoanOverdueTimes(creditCardPayRecordMergeDfZ,reportTime,4,6)
- payRcdStatusDf.loc[payRcdStatusIndex, '准贷记卡账户近12月逾期期数大于或等于“4”的次数'] = cip.getLoanOverdueTimes(creditCardPayRecordMergeDfZ,reportTime,4,12)
- payRcdStatusDf.loc[payRcdStatusIndex, '准贷记卡账户近24月逾期期数大于或等于“4”的次数'] = cip.getLoanOverdueTimes(creditCardPayRecordMergeDfZ,reportTime,4,24)
- payRcdStatusDf.loc[payRcdStatusIndex, '全账户近3月逾期期数大于或等于“1”的次数'] = prp.getLoanOverdueTimes(loanPayRecordMergeDf,reportTime,1,3)\
- +cip.getLoanOverdueTimes(creditCardPayRecordMergeDf,reportTime,1,3)+cip.getLoanOverdueTimes(creditCardPayRecordMergeDfZ,reportTime,1,3)
- payRcdStatusDf.loc[payRcdStatusIndex, '全账户近6月逾期期数大于或等于“1”的次数'] = \
- prp.getLoanOverdueTimes(loanPayRecordMergeDf,reportTime,1,6)+cip.getLoanOverdueTimes(creditCardPayRecordMergeDf,reportTime,1,6)\
- +cip.getLoanOverdueTimes(creditCardPayRecordMergeDfZ,reportTime,1,6)
- payRcdStatusDf.loc[payRcdStatusIndex, '全账户近12月逾期期数大于或等于“1”的次数'] = \
- prp.getLoanOverdueTimes(loanPayRecordMergeDf,reportTime,1,12)+cip.getLoanOverdueTimes(creditCardPayRecordMergeDf,reportTime,1,12)\
- +cip.getLoanOverdueTimes(creditCardPayRecordMergeDfZ,reportTime,1,12)
- payRcdStatusDf.loc[payRcdStatusIndex, '全账户近24月逾期期数大于或等于“1”的次数'] = \
- prp.getLoanOverdueTimes(loanPayRecordMergeDf,reportTime,1,24)+cip.getLoanOverdueTimes(creditCardPayRecordMergeDf,reportTime,1,24)\
- +cip.getLoanOverdueTimes(creditCardPayRecordMergeDfZ,reportTime,1,24)
- payRcdStatusDf.loc[payRcdStatusIndex, '全账户近6月逾期期数大于或等于“2”的次数'] = \
- prp.getLoanOverdueTimes(loanPayRecordMergeDf,reportTime,2,6)+cip.getLoanOverdueTimes(creditCardPayRecordMergeDf,reportTime,2,6)\
- +cip.getLoanOverdueTimes(creditCardPayRecordMergeDfZ,reportTime,2,6)
- payRcdStatusDf.loc[payRcdStatusIndex, '全账户近12月逾期期数大于或等于“2”的次数'] = \
- prp.getLoanOverdueTimes(loanPayRecordMergeDf,reportTime,2,12)+cip.getLoanOverdueTimes(creditCardPayRecordMergeDf,reportTime,2,12)\
- +cip.getLoanOverdueTimes(creditCardPayRecordMergeDfZ,reportTime,2,12)
- payRcdStatusDf.loc[payRcdStatusIndex, '全账户近24月逾期期数大于或等于“2”的次数'] = \
- prp.getLoanOverdueTimes(loanPayRecordMergeDf,reportTime,2,24)+cip.getLoanOverdueTimes(creditCardPayRecordMergeDf,reportTime,2,24)\
- +cip.getLoanOverdueTimes(creditCardPayRecordMergeDfZ,reportTime,2,24)
- payRcdStatusDf.loc[payRcdStatusIndex, '全账户近6月逾期期数大于或等于“3”的次数'] = \
- prp.getLoanOverdueTimes(loanPayRecordMergeDf,reportTime,3,6)+cip.getLoanOverdueTimes(creditCardPayRecordMergeDf,reportTime,3,6)\
- +cip.getLoanOverdueTimes(creditCardPayRecordMergeDfZ,reportTime,3,6)
- payRcdStatusDf.loc[payRcdStatusIndex, '全账户近12月逾期期数大于或等于“3”的次数'] = \
- prp.getLoanOverdueTimes(loanPayRecordMergeDf,reportTime,3,12)+cip.getLoanOverdueTimes(creditCardPayRecordMergeDf,reportTime,3,12)\
- +cip.getLoanOverdueTimes(creditCardPayRecordMergeDfZ,reportTime,3,12)
- payRcdStatusDf.loc[payRcdStatusIndex, '全账户近24月逾期期数大于或等于“3”的次数'] = \
- prp.getLoanOverdueTimes(loanPayRecordMergeDf,reportTime,3,24)+cip.getLoanOverdueTimes(creditCardPayRecordMergeDf,reportTime,3,24)\
- +cip.getLoanOverdueTimes(creditCardPayRecordMergeDfZ,reportTime,3,24)
- payRcdStatusDf.loc[payRcdStatusIndex, '全账户近12月逾期期数大于或等于“4”的次数'] = \
- prp.getLoanOverdueTimes(loanPayRecordMergeDf,reportTime,4,12)+cip.getLoanOverdueTimes(creditCardPayRecordMergeDf,reportTime,4,12)\
- +cip.getLoanOverdueTimes(creditCardPayRecordMergeDfZ,reportTime,4,12)
- payRcdStatusDf.loc[payRcdStatusIndex, '全账户近24月逾期期数大于或等于“4”的次数'] = \
- prp.getLoanOverdueTimes(loanPayRecordMergeDf,reportTime,4,24)+cip.getLoanOverdueTimes(creditCardPayRecordMergeDf,reportTime,4,24)\
- +cip.getLoanOverdueTimes(creditCardPayRecordMergeDfZ,reportTime,4,24)
- payRcdStatusDf.loc[payRcdStatusIndex, '贷款账户近24个月是否出现"G"'] = prp.isExistsInd(loanPayRecordMergeDf,reportTime,"G",24)
- payRcdStatusDf.loc[payRcdStatusIndex, '贷记卡账户近24个月是否出现"G"'] = prp.isExistsInd(creditCardPayRecordMergeDf,reportTime,"G",24)
- payRcdStatusDf.loc[payRcdStatusIndex, '准贷记卡账户近24个月是否出现"G"'] = prp.isExistsInd(creditCardPayRecordMergeDfZ,reportTime,"G",24)
- payRcdStatusDf.loc[payRcdStatusIndex, '贷款账户近24个月是否出现"Z"'] = prp.isExistsInd(loanPayRecordMergeDf,reportTime,"Z",24)
- payRcdStatusDf.loc[payRcdStatusIndex, '用户所有贷款账户过去24个月存在逾期的账户数目'] = prp.getLoanOverdueCount(loanPayRecordMergeDf,reportTime,24)
- payRcdStatusDf.loc[payRcdStatusIndex, '用户所有贷款账户过去24个月状态正常账户数目'] = prp.getLoanNormalCount(loanPayRecordMergeDf,reportTime,24)
- payRcdStatusDf.loc[payRcdStatusIndex, '用户所有贷记卡账户过去24个月存在逾期的账户数目'] = prp.getLoanOverdueCount(creditCardPayRecordMergeDf,reportTime,24)
- payRcdStatusDf.loc[payRcdStatusIndex, '用户所有贷记卡账户过去24个月状态正常的账户数目'] = prp.getLoanNormalCount(creditCardPayRecordMergeDf,reportTime,24)
- payRcdStatusDf.loc[payRcdStatusIndex, '用户所有准贷记卡账户过去24个月存在逾期的账户数目'] = prp.getLoanOverdueCount(creditCardPayRecordMergeDfZ,reportTime,24)
- payRcdStatusDf.loc[payRcdStatusIndex, '用户所有准贷记卡账户过去24个月状态正常的账户数目'] = prp.getLoanNormalCount(creditCardPayRecordMergeDfZ,reportTime,24)
- payRcdStatusDf.loc[payRcdStatusIndex, '用户过去3个月最大逾期期数'] = prp.getPayRcdMaxOverdueNumAllAccout(loanPayRecordMergeDf,creditCardPayRecordMergeDf,creditCardPayRecordMergeDfZ,reportTime,3)
- payRcdStatusDf.loc[payRcdStatusIndex, '用户过去6个月最大逾期期数'] = prp.getPayRcdMaxOverdueNumAllAccout(loanPayRecordMergeDf,creditCardPayRecordMergeDf,creditCardPayRecordMergeDfZ,reportTime,6)
- payRcdStatusDf.loc[payRcdStatusIndex, '用户过去12个月最大逾期期数'] = prp.getPayRcdMaxOverdueNumAllAccout(loanPayRecordMergeDf,creditCardPayRecordMergeDf,creditCardPayRecordMergeDfZ,reportTime,12)
- payRcdStatusDf.loc[payRcdStatusIndex, '用户过去24个月最大逾期期数'] = prp.getPayRcdMaxOverdueNumAllAccout(loanPayRecordMergeDf,creditCardPayRecordMergeDf,creditCardPayRecordMergeDfZ,reportTime,24)
- #概要信息里的字段,从还款状态计算
- briefInfoDf_overdueInfoSum.loc[overdueInfoSumIndex, '该用户过去5年出现逾期的所有账户数目'] = \
- prp.getLoanOverdueCount(loanPayRecordMergeDf,reportTime,24*5)+prp.getLoanOverdueCount(creditCardPayRecordMergeDf,reportTime,24*5)\
- +prp.getLoanOverdueCount(creditCardPayRecordMergeDfZ,reportTime,24*5)
- #解析贷款还款记录指标
- def parseCreditCardMergeAndPayRecordDf(df,payRcdDf):
- if not df.empty and not payRcdDf.empty:
- # 正常
- normalDf = df[(df['账户状态'] != '未激活') & (df['账户状态'] != '销户') & (df['账户状态'] != '呆账')]
- if not normalDf.empty:
- overduePayRcdDf = payRcdDf[payRcdDf['账户编号'].isin(normalDf['账户编号'].values)]
- overduePayRcdDf = utils.replacePayRcdStatus(overduePayRcdDf)
- # 临时保存,不用过滤还款状态为0的
- payRcdMaxOverdueDf = overduePayRcdDf;
- overduePayRcdDf = overduePayRcdDf[overduePayRcdDf['还款状态'] > 0]
- # creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '当前贷记卡逾期账户数'] = overduePayRcdDf['账户编号'].unique().size
- #从“贷记卡信息”中提取,剔除“账户状态”为未激活、销户、呆账、呆帐后,“当前信用卡逾期账户数”/未销户贷记卡账户数(剔除“账户状态”为未激活、销户、呆账、呆帐后记录条数)
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '当前贷记卡逾期账户数占比'] = round(overduePayRcdDf['账户编号'].unique().size / normalDf.index.size, 2)
- #从“贷记卡信息”中提取,剔除“账户状态”为未激活、销户、呆账、呆帐后,对(当前信用卡逾期账户数)按“开户机构代码”去重统计账户状态为逾期,按按“开户机构代码”去重后的记录条数
- overdueCreditCardDf = normalDf[normalDf['账户编号'].isin(overduePayRcdDf['账户编号'].values)]
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '当前贷记卡逾期机构数'] = overdueCreditCardDf['发卡机构'].unique().size
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '当前贷记卡逾期机构数占比'] = round(creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '当前贷记卡逾期机构数'] / normalDf['发卡机构'].unique().size, 2)
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '近3月贷记卡最大逾期期数'] = cip.getPayRcdMaxOverdueNum(payRcdMaxOverdueDf, 3);
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '近6月贷记卡最大逾期期数'] = cip.getPayRcdMaxOverdueNum(payRcdMaxOverdueDf, 6);
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '近9月贷记卡最大逾期期数'] = cip.getPayRcdMaxOverdueNum(payRcdMaxOverdueDf, 9);
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '近12月贷记卡最大逾期期数'] = cip.getPayRcdMaxOverdueNum(payRcdMaxOverdueDf, 12);
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '近24月贷记卡最大逾期期数'] = cip.getPayRcdMaxOverdueNum(payRcdMaxOverdueDf, 24);
- reportTime = queryInfo["reportTime"]
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '近24月贷记卡最大逾期距离现在的月数'] = cip.getPayRcdMaxOverdueNumMonth(payRcdMaxOverdueDf,normalDf,reportTime, 24);
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '最近3个月贷记卡最大连续逾期月份数'] = cip.getContinuousOverdueMonth(payRcdMaxOverdueDf,normalDf,3);
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '最近6个月贷记卡最大连续逾期月份数'] = cip.getContinuousOverdueMonth(payRcdMaxOverdueDf,normalDf,6);
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '最近9个月贷记卡最大连续逾期月份数'] = cip.getContinuousOverdueMonth(payRcdMaxOverdueDf,normalDf,9);
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '最近12个月贷记卡最大连续逾期月份数'] = cip.getContinuousOverdueMonth(payRcdMaxOverdueDf,normalDf,12);
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '最近24个月贷记卡最大连续逾期月份数'] = cip.getContinuousOverdueMonth(payRcdMaxOverdueDf,normalDf,24);
- payRcdTimesDf = payRcdDf[payRcdDf['账户编号'].isin(normalDf['账户编号'].values)]
- payRcdTimesDf = payRcdTimesDf.sort_values(by=["账户编号", "还款日期"], ascending=(True, False))
- payRcdTimesDf = payRcdTimesDf.groupby(['账户编号']).head(24)
- payRcdTimesDf = payRcdTimesDf[
- payRcdTimesDf['还款状态'].isin(['G', 'D', 'C', 'N', 'M', '1', '2', '3', '4', '5', '6', '7'])]#从“贷记卡信息”中提取,剔除未激活、销户、呆账、呆帐后,各账户的还款次数统计“24个月(账户)还款状态”包含"G","D","C","N","M"及数字的个数
- creditCardAccountInfoDf.loc[creditCardAccountInfoIndex, '贷记卡24期还款记录次数'] = payRcdTimesDf.index.size
- # 解析被追偿信息汇总
- def parseRecoveryInfoMergeDf(df):
- if not df.empty:
- recoveryMaxPayDf = df[df['债权转移时的还款状态'] !='--']
- recoveryStatusCs = df[df['账户状态'] == '催收']
- if not recoveryMaxPayDf.empty:
- briefInfoDf_recoveryInfoSum.loc[recoveryInfoSumIndex, '债权转移时的最大还款状态'] = np.max(recoveryMaxPayDf['债权转移时的还款状态']);
- briefInfoDf_recoveryInfoSum.loc[recoveryInfoSumIndex, '债权转移时属于催收状态的账户数'] = recoveryStatusCs.index.size;
- briefInfoDf_recoveryInfoSum.loc[recoveryInfoSumIndex, '债权转移时属于催收状态的账户数/被追偿信息总数'] = round(recoveryStatusCs.index.size/df.index.size,2);
- #creditTradeDetailDf_recoveryInfo
- # 被追偿账户总数
- creditTradeDetailDf_recoveryInfo.loc[recoveryInfoIndex,'被追偿账户总数'] = df.index.size;
- creditTradeDetailDf_recoveryInfo.loc[recoveryInfoIndex, '被追偿业务种类'] = df['业务种类'].unique().size;
- creditTradeDetailDf_recoveryInfo.loc[recoveryInfoIndex, '最新一笔被追偿债券接收时间'] = np.max(df['债权接收日期']);
- creditTradeDetailDf_recoveryInfo.loc[recoveryInfoIndex, '总债权金额'] = np.max(df['债权金额']);
- creditTradeDetailDf_recoveryInfo.loc[recoveryInfoIndex, '债权转移时的最大还款状态'] = np.max(recoveryMaxPayDf['债权转移时的还款状态']);
- def main(pdf_path):
- # 解析pdf开始
- with pdfplumber.open(pdf_path) as pdf:
- for p in range(0, len(pdf.pages)):
- page = pdf.pages[p]
- # first_page = pdf.pages[1]
- # if p == 3:
- # print(3)
- tables = page.extract_tables();
- for i in range(0, len(tables)):
- table = tables[i]
- df = pd.DataFrame(table);
- if len(keyList) > 1 and i == 0: # 判断是否被分页了
- if not utils.checkHeader(df, allHeaders):
- key = keyList[-1];
- dfObj = dfMap[key]
- # dfObj["nextDf"]=df;
- # 贷款信息 贷记卡信息 强制执行记录
- if key == "loanDfs" or key == "creditCardDfs" or key == "forceExecRcdDfs" or key == 'recoveryInfoDfs': # 属于列表
- lastDfObj = dfObj["dfs"][-1];
- lastDfObj["isByPage"] = str(p + 1);
- if len(dfObj["dfs"][-1]["df"].columns) == len(df.columns): # 列数相同
- lastDfObj["df"] = pd.concat([lastDfObj["df"], df], axis=0,ignore_index=True); # 去最后一个进行合并
- # print("key-" + key + "-page-" + str(p + 1) + "-" + "###列数相同####-被分页")
- else:
- # print("key-" + key + "-page-" + str(p + 1) + "-" + "列数不同-被分页")
- lastDfObj["df"] = pd.concat([lastDfObj["df"], df], axis=0, ignore_index=True);
- else: # 查询记录明细 为单个列表
- dfObj["isByPage"] = str(p + 1);
- if len(dfObj["df"].columns) == len(df.columns):
- # print("key-" + key + "-page-" + str(p + 1) + "-" + "###列数相同####-被分页")
- dfObj["df"] = pd.concat([dfObj["df"], df], axis=0, ignore_index=True)
- else:
- # print("key-" + key + "-page-" + str(p + 1) + "-" + "列数不同-被分页")
- dfObj["df"] = pd.concat([dfObj["df"], df], axis=0, ignore_index=True)
- # dfObj["nextDf"] = df;
- # 如果列数相等合并df
- continue;
- headerList0 = df.loc[0, :].tolist() # 第0行为表头
- headerList0 = list(filter(None, headerList0))
-
- headerList1 = []
- if df.index.size>1:
- headerList1 = df.loc[1, :].tolist() # 第1行为表头
- headerList1 = list(filter(None, headerList1))
- if headerList1 == queryInfoDf_header: # 被查询信息 第二行为数据
- queryInfoDf = df;
- dfKey = "queryInfoDf"
- dfMap[dfKey]["df"] = df;
- keyList.append(dfKey);
- elif headerList0 == identity_header: # 身份信息
- identityDf = df[:2] # 截取前2行
- addressDf = df.loc[2:4,:] # 截取3到4行的第一和6
- addressDf = addressDf.reset_index(drop=True)
- mobileDf = utils.replaceDateColIdx(df[5:df.index.size], 5)
- identityDf = pd.concat([identityDf, addressDf], axis=1, ignore_index=True) # 横向合并
- dfKey = "identityDf"
- dfMap[dfKey]["df"] = identityDf;
- keyList.append(dfKey);
- # 组装电话号码df
- dfMap[dfKey]["mobileDf"] = mobileDf
- elif headerList0 == mateDf_header: # 配偶信息
- mateDf = df;
- dfKey = "mateDf"
- dfMap[dfKey]["df"] = df;
- keyList.append(dfKey);
- elif headerList0 == liveInfoDf_header: # 居住信息
- mateDf = df;
- dfKey = "liveInfoDf"
- dfMap[dfKey]["df"] = df;
- keyList.append(dfKey);
- elif headerList0 == occupationInfo_header: # 职业信息 可能存在分页
- occupationDf = df;
- dfKey = "occupationDf"
- dfMap[dfKey]["df"] = df;
- keyList.append(dfKey);
- # elif headerList0 == queryInfoBrief_header0 and headerList1 == queryInfoBrief_header1: # 查询信息概要 第二行为数据
- # queryInfoBriefDf = df;
- # dfKey = "queryInfoBriefDf"
- # dfMap[dfKey]["df"] = df;
- # keyList.append(dfKey);
- elif headerList0 == loanTradeInfo_header: # 信贷交易信息
- loanTradeInfoDf = df;
- dfKey = "loanTradeInfoDf";
- dfMap[dfKey]["df"] = df;
- keyList.append(dfKey);
- elif headerList1 == recoveryInfoSumDf_header: # 被追偿信息汇总
- recoveryInfoSumDf = df;
- dfKey = "recoveryInfoSumDf";
- dfMap[dfKey]["df"] = df;
- keyList.append(dfKey);
- elif headerList1 == badDebtsInfoSumDf_header: # 呆账信息
- badDebtsInfoSumDf = df;
- dfKey = "badDebtsInfoSumDf";
- dfMap[dfKey]["df"] = df;
- keyList.append(dfKey);
- elif headerList1 == overdueInfoSumDf_header: # 逾期透资信息汇总
- overdueInfoSumDf = df;
- dfKey = "overdueInfoSumDf";
- dfMap[dfKey]["df"] = df;
- keyList.append(dfKey);
- elif headerList0 == loanAccountInfoSumDf_header0 and headerList1 == loanAccountInfoSumDf_header1: # 非循环贷账户信息汇总
- loanAccountInfoSumDf = df;
- dfKey = "loanAccountInfoSumDf";
- dfMap[dfKey]["df"] = df;
- keyList.append(dfKey);
- elif headerList0 == creditCardInfoSumDf_header0 and headerList1 == creditCardInfoSumDf_header1: # 贷记卡信息汇总
- creditCardInfoSumDf = df;
- dfKey = "creditCardInfoSumDf";
- dfMap[dfKey]["df"] = df;
- keyList.append(dfKey);
- elif headerList0 == creditCardInfoSumDfZ_header0 and headerList1 == creditCardInfoSumDfZ_header1: # 准贷记卡信息汇总 目前没有数据
- dfKey = "creditCardInfoSumDfZ";
- dfMap[dfKey]["df"] = df;
- keyList.append(dfKey);
- elif headerList0 == repaymentSumDf_header0:#相关还款责任汇总
- dfKey = "repaymentSumDf";
- dfMap[dfKey]["df"] = df;
- keyList.append(dfKey);
- elif headerList0 == publicInfoBriefDf_header0: #公共信息概要
- dfKey = "publicInfoBriefDf";
- dfMap[dfKey]["df"] = df;
- keyList.append(dfKey);
- elif headerList0 == queryRecordSumDf_header0:#查询记录汇总
- dfKey = "queryRecordSumDf";
- dfMap[dfKey]["df"] = df;
- keyList.append(dfKey);
- elif headerList0 == loan_header: # 贷款账户 包括循环贷,非循环贷 循环额度下分账户
- dfKey = "loanDfs";
- dfMap[dfKey]["dfs"].append({"df": df});
- keyList.append(dfKey);
- elif headerList0 == creditCard_header: # 贷记卡账户
- dfKey = "creditCardDfs";
- dfMap[dfKey]["dfs"].append({"df": df});
- keyList.append(dfKey);
- elif headerList0 == creditCardZ_header: # 准贷记卡账户 还不能和贷记卡合并
- dfKey = "creditCardDfsZ";
- dfMap[dfKey]["dfs"].append({"df": df});
- keyList.append(dfKey);
- elif headerList0 == queryRecordDetailDf_header: # 查询记录明细
- dfKey = "queryRecordDetailDf";
- dfMap[dfKey]["df"] = df;
- keyList.append(dfKey);
- elif headerList0 == housingFundRcdDfs_header: # 查询记录明细
- dfKey = "housingFundRcdDfs";
- dfMap[dfKey]["dfs"].append({"df": df});
- keyList.append(dfKey);
- elif headerList0 == forceExecRcdDfs_header: # 强制执行记录
- dfKey = "forceExecRcdDfs";
- dfMap[dfKey]["dfs"].append({"df": df});
- keyList.append(dfKey);
- elif headerList0 == recoveryInfoDfs_header: # 被追偿信息
- dfKey = "recoveryInfoDfs";
- dfMap[dfKey]["dfs"].append({"df": df});
- keyList.append(dfKey);
- # 设置分页
- dfMap[dfKey]["page"] = p + 1;
- logger.info("组装pdf数据完成")
- logger.info("解析基础pdf数据开始")
- # 打印结果解析并构建指标
- for key in dfMap:
- tempDfObjx = dfMap[key];
- if tempDfObjx.__contains__("page"):
- logger.info(key + "-page-" + str(tempDfObjx["page"]))
- if tempDfObjx.__contains__("dfs"):
- if key == "loanDfs": # 贷款账户
- for idx in range(0, len(tempDfObjx["dfs"])):
- tempDfObj = tempDfObjx["dfs"][idx];
- loanAccountDfs.append(dfParser.mergeLoanDf(tempDfObj, idx,queryInfo['reportTime']))
- elif key == "creditCardDfs": # 贷记卡账户合并
- for idx in range(0, len(tempDfObjx["dfs"])):
- tempDfObj = tempDfObjx["dfs"][idx];
- tempCreditCardDf = dfParser.mergeCreditCardDf(tempDfObj, idx,queryInfo['reportTime']);
- if tempCreditCardDf!=None:
- creditCardAccountDfs.append(tempCreditCardDf)
- elif key == "creditCardDfsZ": # 贷记卡账户合并
- for idx in range(0, len(tempDfObjx["dfs"])):
- tempDfObj = tempDfObjx["dfs"][idx];
- tempCreditCardDfZ = dfParser.mergeCreditCardDfZ(tempDfObj, idx,queryInfo['reportTime'])
- if tempCreditCardDfZ!=None:
- creditCardAccountDfsZ.append(tempCreditCardDfZ)
- elif key == "recoveryInfoDfs": # 贷记卡账户合并
- for idx in range(0, len(tempDfObjx["dfs"])):
- tempDfObj = tempDfObjx["dfs"][idx];
- recoveryInfoAccountDfs.append(dfParser.mergeRecoveryInfoDf(tempDfObj, idx, queryInfo['reportTime']))
- elif key == "housingFundRcdDfs": # 贷记卡账户合并
- for idx in range(0, len(tempDfObjx["dfs"])):
- tempDfObj = tempDfObjx["dfs"][idx];
- housingFundRcdAccountDfs.append(dfParser.mergeHousingFundRcdDf(tempDfObj, idx, queryInfo['reportTime']))
- else: # 其他
- for tempDfObj in (tempDfObjx["dfs"]):
- if tempDfObj.__contains__("isByPage"):
- logger.info(key + "============其他被分页页数============" + str(tempDfObj["isByPage"]))
- # logger.info(tempDfObj["df"].values)
- else: # 单笔
- tempDfObj = tempDfObjx;
- if tempDfObj.__contains__("isByPage"):
- logger.info(key + "============被分页页数================" + str(tempDfObj["isByPage"]))
- # logger.info(tempDfObj["df"].values)
- if key == "queryInfoDf": # 解析被查询信息
- parseQueryInfo(tempDfObj);
- # print("\033[1;31m +查询信息+ \033[0m")
- # print(queryInfo)
- elif key == "identityDf": # 身份信息
- parseIdentity(tempDfObj)
- # print("\033[1;31m +身份信息+ \033[0m")
- # print(identity)
- elif key == "mateDf": # 配偶信息
- parseMate(tempDfObj)
- # print("\033[1;31m +配偶信息+ \033[0m")
- # print(mate)
- elif key == "liveInfoDf": # 居住信息
- parseLiveInfo(tempDfObj)
- # print("\033[1;31m +居住信息+ \033[0m")
- elif key == "occupationDf": # 居住信息
- parseOccupationInfoDf(tempDfObj)
- elif key == "loanTradeInfoDf": # 信贷交易信息提示
- parseLoanTradeInfo(tempDfObj);
- # print("\033[1;31m +信贷交易信息提示+ \033[0m")
- # print(loanTradeInfo)
- elif key == "badDebtsInfoSumDf": # 呆账信息汇总
- parseBadDebtsInfoSumDf(tempDfObj)
- # print("\033[1;31m +呆账信息汇总+ \033[0m")
- # print(overdueBrief)
- elif key == "recoveryInfoSumDf": # 被追偿信息汇总-资产处置和垫款
- parseRecoveryInfoSum(tempDfObj)
- # print("\033[1;31m +资产处置和垫款+ \033[0m")
- # print(overdueBrief)
- elif key == "overdueInfoSumDf": # 逾期(透支)信息汇总
- parseOverdueInfoSum(tempDfObj)
- # print("\033[1;31m +逾期(透支)信息汇总+ \033[0m")
- # print(overdueInfo)
- elif key == "loanAccountInfoSumDf": # 非循环贷账户信息汇总 TODO
- parseLoanAccountInfoSum(tempDfObj)
- elif key == "cycleCreditAccountInfoSumDf":#循环额度
- parseCycleCreditAccountInfoSum(tempDfObj)
- elif key == "cycleLoanAccountInfoSumDf":#循环贷
- parseCyleLoanAccountInfoSum(tempDfObj)
- elif key == "creditCardInfoSumDf":#贷记卡
- parseCreditCardInfoSum(tempDfObj)
- elif key == "creditCardInfoSumDfZ": # 准贷记卡
- parseCreditCardInfoSumZ(tempDfObj)
- elif key == "repaymentSumDf": # 相关还款责任
- parseRepaymentSum(tempDfObj)
- elif key == "publicInfoBriefDf":
- parsePublicInfoBrief(tempDfObj);
- elif key == "queryRecordSumDf":
- parseQueryRecordSum(tempDfObj);
- elif key == "queryRecordDetailDf": # 查询记录明细
- parseQueryInfoDetail(tempDfObj)#
- logger.info("解析基础pdf数据完成")
- result = ""
- # 基本信息
- # result+=("\033[1;34m +身份信息+ \033[0m")+"\n"
- result+=utils.toJson(identityInfoDf)+"\n"
- result += utils.toJson(mateInfoDf) + "\n"
- result += utils.toJson(liveInfoDf) + "\n"
- result += utils.toJson(occupationInfoDf) + "\n"
- # result+=("\033[1;34m +概要信息+ \033[0m")+"\n"
- # result+=("\033[1;34m +信贷交易信息提示+ \033[0m")+"\n"
- result+=utils.toJson(briefInfoDf_loanTradeInfo)+"\n"
- # result+=("\033[1;34m +被追偿信息汇总及呆账信息汇总+ \033[0m")+"\n"
- result+="briefInfoDf_recoveryInfoSum"+"\n" #占位符
- result += utils.toJson(briefInfoDf_badDebtsInfoSum) + "\n"
- # result+=("\033[1;34m +逾期(透支)信息汇总+ \033[0m")+"\n"
- #此信息先占位
- result+="briefInfoDf_overdueInfoSum"+"\n"
- # result+=("\033[1;34m +信贷交易授信及负债信息概要+ \033[0m")+"\n"
- result+=utils.toJson(briefInfoDf_loanTradeCreditInfo)+"\n"
- #公共信息
- result += utils.toJson(publicInfoBriefDf) + "\n"
- #查询记录汇总
- result += utils.toJson(queryRecordSumDf) + "\n"
- # 单独输出贷款df
- # logger.info("\033[1;34m +贷款信息Dataframe+ \033[0m")
- # logger.info(dfParser.dfHeaderLoan)
- logger.info("解析贷款数据开始")
- loanMergeDf = pd.DataFrame(columns=dfParser.dfHeaderLoan)
- loanPayRecordMergeDf = pd.DataFrame(columns=dfParser.dfHeaderLoanPayRecord)
- loanSpecialTradeMergeDf = pd.DataFrame(columns=dfParser.dfHeaderLoanSpecialTrade)#特殊交易
- # 输出数据
- for loanDfObj in loanAccountDfs:
- loanMergeDf = pd.concat([loanMergeDf, loanDfObj["loanDf"]], axis=0, ignore_index=True);
- loanPayRecordMergeDf = pd.concat([loanPayRecordMergeDf, loanDfObj["loanPayRecordDf"]], axis=0,ignore_index=True);
- loanSpecialTradeMergeDf = pd.concat([loanSpecialTradeMergeDf, loanDfObj["specialTradeDf"]], axis=0, ignore_index=True);
- # logger.info(loanMergeDf.values)
- # logger.info("\033[1;34m +贷款信息还款记录Dataframe+ \033[0m")
- # logger.info(dfParser.dfHeaderLoanPayRecord)
- # logger.info(loanPayRecordMergeDf.values)
- #
- #==============================信贷交易明细 ===============================
- #被追偿信息
- # 被追偿信息合并df
- recoveryInfoMergeDf = pd.DataFrame(columns=dfParser.dfHeaderRecoveryInfo)
- for recoveryInfoDfObj in recoveryInfoAccountDfs:
- recoveryInfoMergeDf = pd.concat([recoveryInfoMergeDf, recoveryInfoDfObj["recoveryInfoDf"]], axis=0,
- ignore_index=True);
- parseRecoveryInfoMergeDf(recoveryInfoMergeDf);
- #被追偿信息
- result = result.replace("briefInfoDf_recoveryInfoSum", utils.toJson(briefInfoDf_recoveryInfoSum))#替换汇总中的指标
- result += utils.toJson(creditTradeDetailDf_recoveryInfo) + "\n" #设置占位符,由于存在概要的指标在明细中计算
- #特殊交易
- parseSpecialTrade(loanSpecialTradeMergeDf)
- result += utils.toJson(creditTradeDetailHeader_specialTrade) + "\n"
- # 信贷交易明细-解析非循环贷账户
- parseLoanAccountInfo(loanMergeDf);
- result += utils.toJson(creditTradeDetailDf_loanAccountInfo) + "\n"
- #循环额度分账户
- parseCycleCreditAccountInfo(loanMergeDf);
- result += utils.toJson(creditTradeDetailDf_cycleCreditAccountInfo) + "\n"
- #循环贷
- parseCycleLoanAccountInfo(loanMergeDf);
- result += utils.toJson(creditTradeDetailDf_cycleLoanAccountInfo) + "\n"
- # 解析贷款账户指标
- parseLoanMergeDf(loanMergeDf);
- # 解析还款记录相关指标
- parseLoanMergeAndPayRecordDf(loanMergeDf, loanPayRecordMergeDf);
- # logger.info(loanAccountInfo)
- # logger.info(consts.loanAccountInfoHeader)
- # logger.info(loanAccountInfoDf.values)
- # result+=("\033[1;34m +贷款账户信息+ \033[0m")+"\n"
- result+=utils.toJson(loanAccountInfoDf)+"\n"
- logger.info("解析贷款数据完成")
- logger.info("解析贷记卡数据开始")
- #贷记卡合并df
- creditCardMergeDf = pd.DataFrame(columns=dfParser.dfHeaderCreditCard)
- creditCardPayRecordMergeDf = pd.DataFrame(columns=dfParser.dfHeaderCreditCardPayRecord)
- # logger.info("\033[1;34m +贷记卡信息Dataframe+ \033[0m")
- # logger.info(dfParser.dfHeaderCreditCard)
- # 输出数据
- for creditCardDfObj in creditCardAccountDfs:
- creditCardMergeDf = pd.concat([creditCardMergeDf, creditCardDfObj["creditCardDf"]], axis=0, ignore_index=True);
- creditCardPayRecordMergeDf = pd.concat([creditCardPayRecordMergeDf, creditCardDfObj["creditCardPayRecordDf"]], axis=0,ignore_index=True);
- # logger.info(creditCardMergeDf.values)
- # 解析贷记卡账户指标
- parseCreditCardMergeDf(creditCardMergeDf);
- parseCreditCardMergeAndPayRecordDf(creditCardMergeDf,creditCardPayRecordMergeDf)
- #准贷记卡合并df
- creditCardMergeDfZ = pd.DataFrame(columns=dfParser.dfHeaderCreditCardZ)
- creditCardPayRecordMergeDfZ = pd.DataFrame(columns=dfParser.dfHeaderCreditCardPayRecordZ)
- for creditCardDfObj in creditCardAccountDfsZ:
- creditCardMergeDfZ = pd.concat([creditCardMergeDfZ, creditCardDfObj["creditCardDfZ"]], axis=0, ignore_index=True);
- creditCardPayRecordMergeDfZ = pd.concat([creditCardPayRecordMergeDfZ, creditCardDfObj["creditCardPayRecordDfZ"]], axis=0,ignore_index=True);
- #解析准贷记卡相关指标
- parseCreditCardMergeDfZ(creditCardMergeDfZ,creditCardPayRecordMergeDfZ);
- logger.info("解析贷记卡数据完成")
- #加工使用率指标
- # result+=("\033[1;34m +贷记卡账户信息+ \033[0m")+"\n"
- result+=utils.toJson(creditCardAccountInfoDf)+"\n"
- result += utils.toJson(creditCardAccountInfoDfZ) + "\n"
- #使用率
- parseUseRate()
- result += utils.toJson(useRateDf) + "\n"
- #开户数
- parseOpenAccount(loanMergeDf, creditCardMergeDf, creditCardMergeDfZ,recoveryInfoMergeDf,loanPayRecordMergeDf,creditCardPayRecordMergeDf,creditCardPayRecordMergeDfZ)
- result += utils.toJson(openAccountDf) + "\n"
- #24期还款状态
- parsePayRcdStatus(loanMergeDf, creditCardMergeDf, creditCardMergeDfZ,loanPayRecordMergeDf,creditCardPayRecordMergeDf,creditCardPayRecordMergeDfZ)
- result += utils.toJson(payRcdStatusDf) + "\n"
- #由于逾期汇总的指标再还款状态之后需要替换占位 TODO
- result = result.replace("briefInfoDf_overdueInfoSum",utils.toJson(briefInfoDf_overdueInfoSum))
- #公积金
- # 被追偿信息合并df
- housingFundRcdMergeDf = pd.DataFrame(columns=dfParser.dfHeaderHousingFundRcd)
- for housingFundRcdDfObj in housingFundRcdAccountDfs:
- housingFundRcdMergeDf = pd.concat([housingFundRcdMergeDf, housingFundRcdDfObj["housingFundRcdDf"]], axis=0,ignore_index=True);
- parseHousingFundRcd(housingFundRcdMergeDf);
- result += utils.toJson(housingFundRcdDf) + "\n"
- # result+=("\033[1;34m +查询记录明细+ \033[0m")+"\n"
- result+=utils.toJson(queryRecordDetailDf)+"\n"
- return result;
- # grouped.to_csv(r'C:\Users\Mortal\Desktop\ex.csv',index=False, encoding='utf_8_sig')
- if __name__ == '__main__':
- basePath = "D:/mydocument/myproject/git/busscredit/Crerdai/";
- pdf_path = basePath + "闻海雁532329198801060347.pdf"
- # pdf_path = basePath+"雷雨晴130630199006130027.pdf"
- pdf_path=basePath+"杨安140402197102111236.pdf"
- # pdf_path=basePath+"刘盼兰130133198912261210.pdf"
- # pdf_path=basePath+"马维强130521198604045272.pdf"
- pdf_path = basePath + "郑晨晨130681199008205811.pdf"
- # pdf_path=basePath+"人行征信模拟数据报告.pdf"
- pdf_path = basePath + "艾思语51112319960218732X.pdf"
- basePath = "D:/mydocument/myproject/git/busscredit/20200430_report/";
- # pdf_path = basePath + "周颖500108199002111229.pdf"#准贷记卡已销户 呆账
- # pdf_path = basePath + "王思13052819911012122X.pdf"#公积金
- # pdf_path = basePath + "杨夏龙440902198410014270.pdf"#转出
- # pdf_path = basePath + "翟彦超230125199004174216.pdf"#准贷记卡 呆账
- pdf_path = basePath + "蔡月辉330326198502116146.pdf" # 配偶
- pdf_path = basePath + "周芳芳342501198706111782.pdf" #被追偿信息
- # pdf_path = basePath + "罗幂210802199506210520.pdf" # 公积金记录
- pdf_path = basePath + "陈洁350122199005027726.pdf" # 相关还款责任
- if len(sys.argv)>1:
- basePath = sys.argv[1]
- pdf_path = basePath + sys.argv[2]
- print(sys.argv)
- isBat = False#批量的有问题
- isPlt = False
- if isBat:#批量生成数据不对
- for file in os.listdir(basePath):
- if file.endswith("pdf"):
- start = timeit.default_timer();
- pdf_path = basePath+file;
- outPath = pdf_path.replace("pdf",'txt')
- if os.path.exists(outPath):
- continue;
- logger.info(file + "解析开始...")
- try:
- result = main(pdf_path)
- except:
- info = sys.exc_info()
- logger.error(info[0])
- logger.error( info[1])
- # logging.log(logging.ERROR, info[2])
- logger.error(traceback.extract_tb(info[2], 1))
- # print(result)
- #输出到文件
- sys.stdout = open(outPath, mode='w', encoding='utf-8')
- print(result.replace("\033[1;34m","").replace("\033[0m",""))
- logger.info(file+"解析完成")
- gc.collect()
- s = timeit.default_timer() - start;
- logger.info(str(s) + " 秒")
- else:
- if pdf_path.endswith("pdf"):
- start = timeit.default_timer();
- logger.info(pdf_path + "解析开始...")
- outPath = pdf_path.replace("pdf", 'txt')
- result = ""
- if not os.path.exists(outPath) and isPlt==True:#不存在才生成
- try:
- result = main(pdf_path)
- sys.stdout = open(outPath, mode='w', encoding='utf-8')
- print(result.replace("\033[1;34m", "").replace("\033[0m", ""))
- logger.info(pdf_path + "解析完成")
- s = timeit.default_timer() - start;
- logger.info(str(s) + " 秒")
- except:
- info = sys.exc_info()
- logger.error(pdf_path+"#"+"解析失败")
- logger.error(info[0])
- logger.error(info[1])
- logger.error(traceback.extract_tb(info[2]))
- else:
- result = main(pdf_path)
- sys.stdout = open(outPath, mode='w', encoding='utf-8')
- print(result.replace("\033[1;34m", "").replace("\033[0m", ""))
- logger.info(pdf_path + "解析完成")
- s = timeit.default_timer() - start;
- logger.info(str(s) + " 秒")
- #===================================
- logger.info("准备上传文件")
- uploadApiUrl = config.get("baseconf", "uploadApiUrl");
- uploadApiUrl=uploadApiUrl+"?access_token="+dbController.getToken()
- files = {'file': open(outPath, 'rb')}
- businessNum = dbController.getBussinessNum(queryInfo["queryInfoCardId"]);#根据身份证获取业务编号
- data = {'docType': "23", 'businessNum': businessNum}
- response = requests.post(uploadApiUrl, files=files, data=data)
- text = response.text
- p = PrpCrypt(config.get("baseconf", "AESKey"))
- # logger.info("token:"+token)
- # logger.info(url)
- # logger.info(result.text)
- resultText = p.decrypt(text)
- logger.info("upload_result:"+resultText)
|